

Roxhill Developments Limited

M1 Junction 15 West - Roade Bypass

Interpretative Ground Investigation Report

313583-02 (00)

NOVEMBER 2017

RSK GENERAL NOTES

Project No.: 313583-02 (00)

- Title:Preliminary ground investigation interpretative report: M1 Junction 15 West:
Roade Bypass
- Client: Roxhill Developments Ltd (Roxhill), Lumonics House, Valley Drive, Swift Valley, Rugby, Warwickshire, CV21 1TQ

Date: 15th November 2017

Office: RSK, Abbey Park, Humber Road, Coventry, CV3 4AQ. Tel No: 02476 505600

Status: Final

Author	Romani Salama	Reviewed and approved by	Darren Bench
Signature	Jedana	Signature	DEED.
Date:	15 th November 2017	Date:	15 th November 2017

Project manager

Michael Lawson

Date:

Signature

15th November 2017

RSK Environment Limited (RSK) has prepared this report for the sole use of the client, showing reasonable skill and care, for the intended purposes as stated in the agreement under which this work was completed. The report may not be relied upon by any other party without the express agreement of the client and RSK. No other warranty, expressed or implied, is made as to the professional advice included in this report.

Where any data supplied by the client or from other sources have been used, it has been assumed that the information is correct. No responsibility can be accepted by RSK for inaccuracies in the data supplied by any other party. The conclusions and recommendations in this report are based on the assumption that all relevant information has been supplied by those bodies from whom it was requested.

No part of this report may be copied or duplicated without the express permission of RSK and the party for whom it was prepared.

Where field investigations have been carried out, these have been restricted to a level of detail required to achieve the stated objectives of the work.

This work has been undertaken in accordance with the quality management system of RSK Environment Ltd.

CONTENTS

1	INTRODUCTION6			
	1.1	Terms	of reference	6
	1.2	Propos	sed development	6
	1.3	Object	ives	7
	1.4	Scope		7
	1.5	Backg	round information	8
-	1.6		tions	
2			ILS	
	2.1			
	2.2		topography, geography and geomorphology	
3	2.3 SUN	Site de IMARY	escription	10 11
	3.1		hed geology and expected ground conditions	
4	GRO	JUND I	NVESTIGATION	13
5			CONDITIONS IDENTIFIED	
	5.1		d conditions	
		5.1.1	Agricultural topsoil	
		5.1.2	Possible made ground	
		5.1.3	Made Ground	
		5.1.4	Oadby Member (Glacial Till)	
		5.1.5	Glaciofluvial deposits	
		5.1.6	Blisworth limestone formation	
		5.1.7	Rutland formation	
	5.0	5.1.8	Results of soakage testing	
	5.2		dwater	
	5.3		d gas regime	
	5.4		/olfactory evidence of soil and groundwater contamination	
6	5.5 QU/		TIVE RISK ASSESSMENT	
	6.1	Linkag	les for assessment	28
	6.2	Metho	dology and results	29
		6.2.1	Inhalation of vapour	29
		6.2.2	Inhalation of fugitive dust	29
		6.2.3	Ingestion and absorption by direct contact; including hand to mouth contact and absorption through the skin	29
		6.2.4	Uptake of contaminants by vegetation potentially impacting plant growth	30
		6.2.5	Migration by surface run-off	30
		6.2.6	Migration into groundwater (Principal Aquifer)	30
		6.2.7	Transportation via the land drains in to the sewerage system or to outlets into the environment (drainage and streams)	32
7	6.3 ASS	Summ SESSMI	ary of quantitative risk assessment	32
	7.1	Potent	ial sources of contamination	33
	7.2	Prelim	inary contaminated land risk assessment	33

		7.2.1	Risks to human health during construction	. 33
		7.2.2	Risk to human health post construction	. 33
		7.2.3	Risks to local ecology and landscape planting	. 34
		7.2.4	Risks to surface water	. 34
		7.2.5	Risks to groundwater	. 34
		7.2.6	Risks due to ground gas	. 34
		7.2.7	Risk to buried structures and services	. 35
8	GEC	DTECH	NICAL SITE ASSESSMENT	. 36
	8.1	Prelimi	inary geohazard and geotechnical assessment	. 36
		8.1.1	Mining and natural cavities	. 36
		8.1.2	Man made voids or obstructions	. 36
		8.1.3	Earthworks	. 36
		8.1.4	Existing cut slopes	. 37
		8.1.5	Gradient on site	. 37
		8.1.6	As-dug cut material suitability	. 37
		8.1.7	Embankment stability	. 37
		8.1.8	Bridge foundations	. 38
		8.1.9	Cutting stability	. 40
		8.1.10	Earthworks – Materials reuse	. 41
		8.1.11	Aggressive soil chemistry	. 41
		8.1.12	Highway construction	. 41
		8.1.13	Groundwater levels	. 43
			Drainage	
9	REU	JSE OF	MATERIALS	. 44
	9.1		of suitable materials	
			for landfill disposal	
			l tax	
10 11			ONS NDATIONS	
11	-	-		-
	11.1	Genera	al recommendations	. 46

TABLES

Table 1: Geology at the site	11
Table 2: Issues targeted within the ground investigation	14
Table 3: Geology encountered at the site	16
Table 4: Summary of insitu and exsitu soil testing for glacial till	18
Table 5: Summary of insitu and exsitu soil testing for Glaciofluvial deposits	19
Table 6: Summary of insitu and exsitu soil testing for weathered Blisworth Limestone Formation	20
Table 7: Summary of insitu and exsitu soil testing for Blisworth Limestone Formation	21
Table 8: Summary of insitu soil testing for weathered Rutland Formation	22
Table 9: Summary of in-situ and laboratory test results for Solid Rutland Formation	22
Table 10: summary of soakage testing	23
Table 11: summary of groundwater strike and rise during ground investigation	23
Table 12: Summary of groundwater monitoring	23
Table 13: Summary of gas monitoring results	25
Table 14: Identified potentially relevant pollutant linkages	28

Table 15: Comparison of soil concentrations against background concentrations	30
Table 16: Summary of groundwater contaminant exceedances	31
Table 17: Preliminary advice for the design and construction of piled foundations	
Table 18: Illustration of typical pile working loads for CFA piles	39
Table 19: Summary of CBR values derived from in-situ DCP tests	42

FIGURES

Figure 1	Site location plan
Figure 2	As Built Exploratory Hole Location Plan
Figure 3	As Built Exploratory Hole Location Plan (showing preliminary highway design)

APPENDICES

APPENDICES

Appendix A	Service constraints
Appendix B	Summary of legislation and policy relating to contaminated land
Appendix C	Site photographs
Appendix D	Risk assessment methodology
Appendix E	Exploratory hole records
Appendix F	Ground gas monitoring data
Appendix G	Groundwater monitoring records
Appendix H	Laboratory certificates for chemical soil analysis
Appendix I	Laboratory certificates for groundwater analysis
Appendix J	Human health generic assessment criteria
Appendix K	Generic assessment criteria for phytotoxic effects
Appendix L	Generic assessment criteria for controlled waters
Appendix M	Generic assessment criteria for potable water supply pipes

- Appendix N Comparison of soil analysis to human health criteria
- Appendix O Comparison of water laboratory data to controlled waters GAC
- Appendix P Certificates of geotechnical analysis
- Appendix Q Updated geotechnical risk register
- Appendix R Updated contaminated land register
- Appendix S HASWASTE

1 INTRODUCTION

RSK Environment Limited (RSK) has been commissioned by Roxhill Developments Limited to carry out a Geotechnical and Geoenvironmental Assessment of the site for the proposed alignment of the bypass around the village of Roade, Northamptonshire.

The proposed highway stretches over approximately 2.5km in length and has various land owners and land uses which predominately comprise agricultural fields intersected from north to south by an active railway line (4 line track) in deep cutting, Blisworth Road, a shallow drainage ditch, a rough track and finally an east west trending dismantled railway line close to the most south westerly extent.

This report is specific to the investigation undertaken on the proposed highway scheme only.

The interpretative ground investigation report is presented herein. This report is subject to the RSK service constraints given in Appendix A.

1.1 Terms of reference

This report comprises a factual report in general accordance with the requirements of:

- BS5930:2015 'Code of practice for ground investigations';
- BS10175:2011 Investigation of potentially contaminated sites Code of Practice;
- Environment Agency CLR 11 2004a 'Model Procedures for the Management of Land Contamination' (Contaminated Land Risk Assessment); and
- BS EN 1997-2:2007. Eurocode 7 Geotechnical design Part 2: Ground investigation and testing.

1.2 Proposed development

It is understood that the site is being considered for a bypass around the western edge of the village of Roade to relieve present and predicted future traffic volumes.

The redline boundary for the proposed road is shown upon Roxhill Developments Ltd and BWB Master plan ref: NGW-BWB-GEN-XX-SK-D-SK01, dated April 2016. Proposals are understood to comprise of a single 7.30m wide carriageway plus 1m hard strips and footway/cycleway provision along the route. The proposed road will start south of the village of Roade and will extend in a northwards direction around the western side of the village before branching east and crossing the railway line and reconnecting with the A508 (Northampton Road) north of the village of Roade.

1.3 Objectives

The purpose of the investigation works undertaken were to confirm the underlying ground conditions present beneath the bypass alignment. The bypass alignment has previously been subject to a Preliminary Sources Study Report 313418-02 (00), dated December 2016. In addition, the information collated will be used to assist in the master planning design and to support the Environmental Statement being developed for the proposed scheme.

The main objectives of the investigation are to:

- Confirm the stratigraphy of the soil across the site;
- Confirm the groundwater and soil gas regime;
- Confirm the contamination status of the site using a programme of in-situ screening and laboratory analysis; and
- To provide sufficient geotechnical information characterising the strata encountered beneath the alignment.

In line with Eurocode 7, BS5930, BS10175 and CLR 11 further phases of targeted investigation may be required to provide specific data and information for detailed design of individual elements of the scheme, as the design evolves.

1.4 Scope

The project has been carried out to an agreed brief as set out in RSK's proposal ref. M1 Junction 15 West: Roade Bypass dated June 2017 in order to provide information to enable to site to be redeveloped as a new bypass including provision of a new bridge constructed across the existing railway cutting and line.

The project has been carried out to an agreed brief as set out in RSKs proposal (ref. 313583-00 (01) Specification, dated 15th June 2017.

The ground investigation fieldwork carried out at the site was undertaken in accordance with a specification developed by RSK in view of the Client's proposed development proposals.

The scope of works for the assessment include:

Inclusive within the Factual Report;

• an intrusive investigation, with associated laboratory analysis and programme of subsequent monitoring events.

Inclusive within the Interpretive Report;

- development of a refined conceptual site model followed by generic quantitative risk assessment (GQRA) to assess complete pollutant linkages that may require the implementation of migration measures to facilitate development;
- interpretation of ground conditions and ground model for the site;
- classification of the strata encountered and identification of soil properties;

- an interpretative report to assess both geotechnical and geoenvironmental risks and identify implications that will affect the detailed design of the project; and
- an assessment of the potential waste classification implications of soil arisings.

1.5 Background information

The following scheme design master plan drawing has been provided to RSK by the client:

• NGW-BWB-GEN-XX-SK-D-SK01, dated June 2016.

A preliminary risk assessment (desk study) has been undertaken for the proposed development:

 M1 Junction 15 West – Roade Bypass: Preliminary sources study report (ref:313418-02), RSK, dated 7th December 2016.

1.6 Limitations

Access to numerous parcels (plots 100, 105 and 120) of land were not granted. Therefore several trial pits TP06, 08, 09, 10, 11, 19, 21, 24 and 25 were not undertaken as planned within the central portion of the route alignment. This is shown on Figure 2.

The comments given in this report and the opinions expressed are based on the ground conditions encountered during the site work and on the results of tests made in the field and in the laboratory. However, there may be conditions pertaining to the site that have not been disclosed by the investigation and therefore could not be taken into account. In particular, it should be noted that there may be areas of made ground not detected due to the limited nature of the investigation or the thickness and quality of made ground across the site may be variable. In addition, groundwater levels and ground gas concentrations and flows may vary from those reported due to seasonal, or other, effects.

Whilst asbestos containing materials were not identified during the fieldworks or supporting laboratory analysis, asbestos is often present in discrete areas. Thus, although not encountered during the site investigation, may be found during more extensive ground works or within areas not investigated.

2 SITE DETAILS

2.1 Site location

The proposed Roade bypass, referred to hereafter as "the site" is located west of the village of Roade, Northampton and is designed to bypass the village of Roade in an attempt to relieve the village of high traffic congestion. The site currently comprises of a series of agricultural fields, a dismantled railway line alignment, Blisworth Road and an existing 4 track live railway line within deep cutting. The proposed development stretches approximately 2.5 km to the west of Roade, starting south of Roade (off the A508) and extends north for approximately 1.5 km before turning eastwards for approximately 1km for the remainder of the route and reconnecting with the A508, north of Roade.

A location plan for the site is presented as Figure 1, and the boundary of the current assessment and exploratory hole locations are defined on Figure 2 and upon Figure 3 showing the currently proposed alignment.

2.2 Local topography, geography and geomorphology

The site sits within a formerly glaciated area. The land is gently undulating with a general rise from the southern extent to the north eastern corner.

The site sits within a formerly glaciated area. The land is gently undulating with a general fall to the south of the site. At its highest, the site elevation is approximately 122m AOD located where the proposed bypass branches off from the A508 Northampton Road, north of the town of Roade. The proposed bypass crosses over a railway line north-west of the town of Roade, which is located within a deep cutting. The route dips to less than 115m AOD just after it crosses Blisworth Road and the drainage ditch, before rising back to 120m AOD at its most westerly extent. At the time of the walkover the drainage ditch did not contain any water. The route then drops again towards the A508 Stratford Road, rejoining at an elevation of approximately 100m AOD, although the topography is undulating at this end of the site.

The proposed bypass is to meet a modified section of the A508 Stratford Road, at the point at which it crosses an historic, now dismantled, overgrown railway line.

The geological sequence of the majority of the site is understood to comprise Oadby Member Glacial Till (Superficial) overlying solid deposits anticipated to be the Blisworth Limestone Formation, which is principally limestone's with thin bands of fossiliferrous mudstone and marls, underlain by the succession of marine and non-marine mudstones, sandstones and limestone's of the Blisworth Clay, Rutland Formation, Stamford Member, Northampton Sand Formation with the Whitby Mudstones at depth. Locally other deposits including Cornbrash limestone's might be encountered at depth at the northern extent.

The geological sequence of the area is understood to be one of fossiliferrous mudstone and siltstone, laminated and bituminous in part, with thin siltstone or silty mudstone beds

and rare fine-grained calcareous sandstone beds deposited within sea conditions and eroded by periods of glaciations and later deposition of Oadby Member and Glaciofluvial Deposits.

2.3 Site description

A site walkover was undertaken on the 22nd July 2016 and 24th August 2016. The proposed alignment of the proposed bypass predominately comprises fields, intersected by, from north to south, a 4 track live railway in deep cutting, Blisworth Road, a drainage ditch, a rough track/road and finally a dismantled former railway line.

From its northern extent, the proposed route leaves the A508 Northampton Road heading roughly west and crosses a ditch and hedge before crossing an arable field. Beyond the field the route crosses an existing 4 track live railway line (Roade Cutting SSSI) located within a steep, densely vegetated cutting. Immediately beyond the railway is an additional arable field with hedgerow boundaries. The first field is accessible from the A508 Northampton Road. This field can be accessed via a bridge over the railway line from the first field.

The route then turns south-west and passes through two livestock (sheep/cattle) fields bounded by hedgerows, between which is Blisworth Road. The field to the north of Blisworth Road is accessible via an adjacent field, while the field to the south is not accessible from the Road, and appears to be accessible via Hyde Farm.

From there the route heads south and crosses a drainage ditch between the southern livestock field and into a final livestock field, bounded again by hedgerows and semi mature trees and a shallow ditch, accessible via Hyde Farm. The route then turns southeast and crosses two arable fields separated by a farm track which provides access to the fields, and originates at Dovecote Farm off of Blisworth Road.

The route then terminates at the A508 Stratford Road, at the site of a dismantled railway. The dismantled railway is heavily overgrown by dense shrubs, brambles and semi-mature and mature trees. The end of the former railway immediately adjacent to the A508 is fully overgrown. An area of low growth and grassed verge is present adjacent to the A508, while the point at which the proposed bypass and the modified A508 will meet is accessed via the arable field to its north, mentioned above. The dismantled railway can also be accessed via a gated entrance of an adjacent field, further south along the A508.

3 SUMMARY OF AVAILABLE INFORMATION

3.1 Published geology and expected ground conditions

Table 1 provides further details of the anticipated geological succession.

Table 1: Geology at the site

Geological unit	Description	Thickness (m)	
Surfacing and Buried Structures: (source: Envirocheck History Maps, Site Observation, Service records, Site clearance)	Hard standing was identified along tracks and roads that cross the route; however the vast majority of the site is open fields anticipated to be underlain by topsoil's from surface to nominal thicknesses. A known gas main was identified on the services drawing records as crossing a small portion of the northern most point where the proposed route joins the A508.	No thickness recorded	
Made Ground / Topsoil: (source: BGS Maps, Available Borehole	The entire site is anticipated to be underlain by a cultivated plough layer or topsoil and turf resulting in subsoil or growing medium. Given its extensive use for arable crops and livestock grazing, it is anticipated that this layer could extend between 0.2m and 0.6m depth and is anticipated to be derived from the underlying Glacial Till, and would be anticipated to be sandy gravelly clay in nature.	No thickness	
Logs, Envirocheck Geology & History Maps, memoirs)	There is the potential for made ground to be present below and adjacent to any roads or railways that cross the route of the proposed bypass. The thickness of highway constructions is anticipated to be no greater than 0.45m in depth and likely to comprise bound macadam surfacing over granular sub base and perhaps granular hardcore capping.	recorded	
Superficial geology			
Oadby Member (Glacial Till/ Diamicton Till) (source: BGS Maps, Available Borehole Logs, Envirocheck Geology & History Maps, memoirs)	The majority of the site appears to be underlain by a mantle of Oadby Member (Diamicton Till/Glacial Till) which is anticipated to be primarily over consolidated sandy gravelly clay. It may also contain sandy gravel strings, lenses and pockets which may contain perched or confined groundwater. Limited deposits of Glaciofluvial Deposits are anticipated to be present at the southern end of the route and are likely to take the form of sands and gravels.	No thickness recorded	
Solid geology			

Geological unit	Description	Thickness (m)
Blisworth Limestone Member/ Rutland Formation	The entirety of the site is indicated to be underlain by the Blisworth Limestone Formation, likely to be weathered beneath superficial deposits to firm to stiff grey and brown clays tending to off-white or yellowish limestone with thin marl and mudstone bands. Calcareous shell and fossil fragments are common throughout these deposits. Beneath which the Blisworth Clay Formation is likely to be encountered. In the extreme south of the site, the Rutland Formation is present, and is likely to be weathered to grey clays and silts. Below this strata, it is likely that the Stamford Member which is anticipated to comprise sandstone and interbedded siltstone will be present overlying the Northampton Sand Formation, all above the Whitby Mudstone Formation.	>1,350m
Mining (source: Coal Authority web viewer, BGS Maps, Available Borehole Logs, Envirocheck records, Geology & History Maps)		N/A
Faults (source: BGS Maps, Available Borehole Logs, Envirocheck Geology Maps, memoirs)	None identified	N/A
Opencast Some sand and gravel quarries noted within 200m of the site, although none expected on site. (source: Coal Authority web viewer, BGS Maps, Envirocheck History Maps) Some sand and gravel quarries noted within 200m of the site, although none expected on site.		N/A
Mineral Protection (source: Local Authority Plan)	None identified	N/A
Soil Chemistry (source: Envirocheck / BGS) Available soil chemistry data suggests that the natural soils anticipated to be present at shallow depths across the site are unlikely to contain any significantly elevated concentrations of contaminants that would be considered to represent a risk to Human Health for a commercial development.		N/A

4 GROUND INVESTIGATION

Intrusive investigation fieldworks were undertaken between 5th September and 20th September 2017 and were followed by a series of four, weekly ground gas and groundwater monitoring and sampling events.

The investigation undertaken at the site comprised the following:

- Setting out and service Clearance (RSK SafeGround);
- Sinking of 5 combined windowless and rotary follow on cored boreholes to depths between 15.00m and 30.00m bgl;
- Sinking of 12 window sample boreholes to depths between 3.00m and 5.45m;
- Excavation of 18 trial pits to depths between 0.50m and 4.50m;
- Sinking of 13 DCP tests to a depth of 1m;
- Installation of 17no combined groundwater/gas monitoring wells to varying depths within superficial deposits and bedrock including provision of lockable vandal proof covers;
- Four return visits to monitor groundwater levels & ground gas concentrations;
- One visit (first visit) to purge the groundwater from all boreholes;
- One visit (second visit) to undertake water sampling from boreholes;
- Surveying in of as built exploratory hole positions using GPS surveying equipment;
- Associated sampling and in-situ testing including SPTs;
- Soil and rock sample geotechnical laboratory testing; and
- Soil and groundwater sample chemical laboratory testing.

Full records and details covering the methodology of the investigation, the location rationale for exploratory holes, exploratory hole logs, completed laboratory testing results and exploratory hole location drawings are presented separately within the Factual Ground Investigation Report (313583 – 01 (00).

The ground investigation was developed to supplement the findings of the desk study research and to confirm or otherwise the conceptual side model presented within the Preliminary Sources Study Report. Additionally the investigation was required to obtain geotechnical and chemical properties to allow design assessments to be refined.

Specific issues targeted by the ground investigation are identified in Table 2 below;

	Area	Issue	Exploratory Holes	Testing	Comments
Geo-environmental	General site coverage to obtain base line parameters for underlying geochemical characteristics of soil and groundwater	General chemical characteristics of the Topsoil, near surface sub soils and groundwater as the site is Greenfield	All exploratory positions	Chemical analysis	To confirm contamination risk potential as well as to confirm potential for aggressive ground for concrete mix designs
Geotechnical	General site coverage to obtain base line parameters for underlying geotechnical characteristics of superficial geology	General geotechnical characteristics	All window sample positions and all trial pit positions	Hand shear vane, SPT's	To confirm distribution, classification, uniformity in plan and depth
	General site coverage to obtain base line parameters for underlying geotechnical characteristics of bedrock geology	General geotechnical characteristics	BH01 – BH05	SPTs	To confirm strata succession and strength characteristics
	Cuttings and earthworks properties	Strata depths, properties and groundwater levels	All exploratory positions	SPT, PI, QUTxI, Hand Shear Vane, Consols, Compaction, MCV/MCC, Recompacted CBR	To confirm strata strength characteristics and uniformity. To confirm distribution, classification and reusability in earthworks filling operations
	Embankment Foundations	Strata depths and properties and groundwater levels	All exploratory positions	Classification and Compaction testing	To confirm strata strength characteristics and uniformity
	Preliminary bridge foundation design	Strata depths and properties and groundwater levels	BH01 and BH02	PI, QUTxI, Consols	To confirm bearing capacity and settlement characteristics and uniformity of strata
	Hard standing and highways	Strata depths and properties	All exploratory positions	DCP's Classification,	To confirm distribution,

Area	Issue	Exploratory Holes	Testing	Comments
and earthworks	and groundwater levels		Compaction testing and recompacted CBR.	classification, uniformity in plan and depth
Flood Attenuation Ponds	Soil Infiltration	TP22, TP23 and TP26	Soakaways	To obtain infiltration characteristics and effectiveness of soakaways or need for lining of ponds

5 GROUND CONDITIONS IDENTIFIED

The results of the intrusive investigation and subsequent laboratory analysis undertaken are detailed below. The descriptions of the strata encountered, notes regarding visual or olfactory evidence of contamination, list of samples taken, field observations of soil and groundwater, in-situ testing and details of monitoring well installations are included on the exploratory hole records presented separately in the Factual Ground Investigation Report (313583-01 (00)).

5.1 Ground conditions

The exploratory holes revealed that the site is underlain by variable but nominal thicknesses of agricultural topsoil over drift deposits predominately identified to be the Oadby member (glacial till) however locally Glaciofluvial deposits were also encountered (within the central area of the proposed route).

Underlying these superficial deposits, the predominant geological member in the north of the route is the Blisworth Limestone Formation; however, as the route extends southwards, the Rutland Formation was encountered. This appears to confirm the stratigraphical succession described within the conceptual site model.

For the purpose of discussion, the ground conditions are summarised in Table 3 and the strata discussed in subsequent subsections.

Strata	Exploratory holes encountered	Depth to Top of stratum m bgl	Depth to Bottom of stratum m bgl
Agricultural Topsoil	All exploratory positions except BH01, BH02, TP3, TP4, WS11 and WS12	GL	Ranged from 0.20m to 0.40m
Possible Made Ground	BH01, BH02, WS11, WS12, TP03, TP04, TP22 and TP23	GL	Ranged from 2.30m – 5.30m *base not proven within TP22, TP23, and WS12
Made Ground	TP16A and WS05	GL	0.40m to 0.50m
Oadby Member (Glacial Till)	All exploratory positions except WS3, TP3, TP12, TP15,TP16, TP17, TP22, TP23	0.20	Ranged from 0.5m to 9.00m *base not proven within WS01, WS02, WS03, WS10, WS11, WS12
Glaciofluvial Deposits (locally absent)	WS03 and TP12	0.30	1.20m to 3.30m

Table 3: Geology encountered at the site

Strata	Exploratory holes encountered	Depth to Top of stratum m bgl	Depth to Bottom of stratum m bgl
Blisworth Limestone Formation	BH01 to BH05, TP02, TP13, TP14, TP15, TP16, TP17 and TP18	0.30m to 9.00m	Ranged from 6.50m to 18.65m *base not proven within any trial pits
Note: Thickness' are proven thickness in exploratory holes and not full thickness of strata. Strata are likely to be thicker.			

5.1.1 Agricultural topsoil

The topsoil (ploughed surface materials) across the site was typically uniform, comprising dark brown or orange brown sandy, gravelly occasionally silty CLAY. The gravel content was variable, but comprised variations of angular to sub-rounded fine to coarse flint, quartzite and chalk with frequent roots and rootlets. The Agricultural Topsoil ranged in thickness between 0.20m to 0.40m thick across most of the site.

The recorded laboratory test results are detailed within the Factual Ground Investigation Report presented separately.

11 soil samples of these deposits were sent for contamination screening testing.

No obvious visual or olfactory evidence of contamination was identified within any of these deposits encountered during the ground investigation.

5.1.2 Possible made ground

Possible made ground was encountered only within the exploratory holes near the Roade Cutting (BH01, BH02, TP22, TP23, WS11 and WS12). This was typically uniform, comprising brown mottled orange, sometimes multicoloured slightly sandy, slightly gravelly clay with occasional to frequent cobbles and boulders of limestone. The gravel content was variable but comprised variations of angular to sub-rounded, fine to coarse, flint, quartzite, chalk and limestone. These deposits were very hard to distinguish from the underlying natural Glacial Till as no foreign bodies were identified, however consideration of the strata colouration variation, consistency and strengths and visual review of the topography leads us to postulate that the Glacial deposits in the upper half of the deep cutting had been removed during the cutting slope gradients are reduced in angle for stability and where the ground appears to rise from the surrounding ground levels fairly noticeably.

Two soil samples of these deposits were sent for contamination screening testing.

No obvious visual or olfactory evidence of contamination was identified within any of these deposits encountered during the ground investigation.

5.1.3 Made Ground

Definitive made ground was encountered within WS05 and TP16A which was located in the vicinity of the disused railway track in the southern most field of the proposed road.

This comprised of limestone cobbles and boulders which were typically used for railway ballast. This was proven to be 0.40m thick. No other Made Ground was encountered and these were found to directly overlie natural strata.

Two soil samples of these deposits were sent for contamination screening testing.

No obvious visual or olfactory evidence of contamination was identified within any of these deposits encountered during the ground investigation.

5.1.4 Oadby Member (Glacial Till)

The Oadby Member was typically encountered beneath the topsoil across the entirety of the site. On occasion, this stratum was located at depth beneath (possible made ground deposits within BH01 and BH02 close to the railway cutting crest.

The soils encountered typically comprised soft to firm orange brown slightly gravelly sandy CLAY; with a gravel content consisting of angular to sub-rounded fine to coarse flint, quartzite, chalk fragments. With depth this stratum becomes firm to stiff dark brown or bluish grey, occasionally mottled orange, slightly silty CLAY.

Exploratory holes indicate that these stratums can vary in thickness between 0.40m to 5.10m with the majority of holes where full thickness was defined suggesting an approximate thickness of 1 to 3m. However, the base of the stratum was typically not proven within the shallower trial pits and window sampler boreholes.

Three soil samples of these deposits were sent for contamination screening testing.

These deposits were recorded to be generally stable during excavation as trial pits did not collapse when left open to undertake soakaway testing.

A summary of the in-situ and laboratory test results in this stratum is presented in Table 4 below and are included within the Appendix E and P.

The recorded in-situ test results and laboratory test results are detailed within the Factual Ground Investigation Report presented separately.

Table 4: Summary of insitu and exsitu soil testing for glacial till

Soil parameters	Range	No Tests
Moisture content (%)	14 - 27	4
Liquid limit (%)	42 - 65	3
Plasticity limit (%)	16 – 30	
Plasticity index (%)	26 - 35	
Plasticity term	Intermediate to high	n/a
Shrinkage Potential	Medium	
Clay (%)	24 - 35	3
Silt (%)	25 - 38	
Sand (%)	23 - 34	
Gravel (%)	4 - 17	
Earthworks Class	Class 2	
Maximum Dry Density – 4.5kg Rammer (Mg/m ³)	1.80	1

Soil parameters	Range	No Tests
Optimum Moisture Content - 4.5kg Rammer (%)	17	
Natural Moisture Contents of samples tested (%)	13	
SPT 'N' values		23
	6 – 50	
Undrained shear strength inferred from SPT 'N' values (kN/m ²)	25 - 210	
Stiffness term	Soft to very stiff	
Undrained shear strength measured by onsite hand vane testing (kN/m ²)	38 – 126	21
Stiffness term	Soft to stiff	

Given the topography, individual borehole plan positions and inherent heterogeneity of the strata in terms of its thickness and material structure there is considerable variation with depth and level. However, as expected in most instances the data indicates a progressive increase in SPT and corresponding strength of the strata with depth with most materials initially being soft to firm closer to surface becoming stiff with depth.

5.1.5 Glaciofluvial deposits

The Glaciofluvial deposits were encountered within two exploratory holes (TP12 and WS03) approximately half way along the proposed route. The thickness of the stratum was proven to range from 1.00m to 3.00m.

The soils encountered comprised orange slightly slity slightly clayey slightly gravelly sand or orangish brown sandy gravel, with gravel fraction typically fine to coarse quartzite, flint, chalk and rare limestone.

A summary of the in-situ and laboratory test results in this stratum is presented in Table 5 below and are included within the Appendix E and O.

Soil parameters	Range	No Tests
Moisture content (%)	10 - 16	2
Clay (%)	10 - 14	2
Silt (%)	12 - 15	
Sand (%)	56 – 67	
Gravel (%)	8 - 18	
Earthworks Class	2	
Maximum Dry Density – 4.5kg Rammer (Mg/m ³)	1.82	1
Optimum Moisture Content - 4.5kg Rammer (%)	13	
Natural Moisture Contents of samples tested (%)	16	

5.1.6 Blisworth limestone formation

The Blisworth limestone formation stratum was encountered in two forms a weathered form and a solid form.

5.1.6.1 Weathered Blisworth limestone formation

The Blisworth limestone formation was regularly encountered in its weathered form. This was typically observed below the Oadby Member and above the solid deposits. However, this was occasionally observed directly below the topsoil.

The deposits encountered typically comprised a firm to stiff grey slightly gravelly clay with fine to coarse sub-angular to sub-rounded limestone gravels.

Table 6: Summary of insitu and exsitu soil testing for weathered Blisworth LimestoneFormation

Soil parameters	Range	No tests
Moisture content (%)	17	1
Liquid limit (%)	33	
Plasticity limit (%)	18	
Plasticity index (%)	25	
Plasticity term	Low	
Volume change potential	Medium	
SPT 'N' values (depth plots presented separately)	14 – 50	17
Undrained shear strength inferred from SPT 'N' values (kN/m ²)	58 - 210	
Stiffness term	Firm to very stiff	
Undrained shear strength measured by onsite hand vane testing (kN/m ²)	42 – 110	9
Stiffness term	Firm to stiff	

One soil sample of these deposits was sent for contamination screening testing.

5.1.6.2 Solid Blisworth limestone formation

Solid geology associated with the Blisworth limestone formation was encountered directly beneath the weathered zones within BH02, BH03, BH04, BH05, TP14 and TP15. This stratum was encountered directly beneath the Oadby Member within TP01, TP02, TP05, TP13 and TP18. The thickness of the solid deposit was proven within all rotary boreholes (BH01 to BH05) and was thickest within the northern part of the proposed highway alignment. The thickness typically ranged from 8.55m (BH02) to 2.50m (BH05).

The bedrock geology associated with the Blisworth limestone formation was encountered as a medium strong to extremely strong grey (sometimes yellow orange brown) limestone.

A summary of the in-situ and laboratory tests in the Blisworth limestone formation is presented in Table 7 below and are included within Appendix E and Appendix P.

The recorded in-situ test results and laboratory test results are detailed within the Factual Ground Investigation Report presented separately.

Soil parameters	Range	No tests
Moisture content (%)	2.00 – 27	9
SPT 'N' values (depth plots presented separately)	>50	24
Bulk Density (Mg/m ³)	2.48 – 2.49	2
Dry Density (Mg/m ³)	2.37 – 2.37	2
Moisture Content (%)	4.7 - 5	2
Unconfined Compressive Strength (MPa)	6 – 27	2
Point Load (I ₅₀) (MN/m ²)	0.17 – 3.82	5
Equivalent estimated UCS of Point Load (MPa) (using factor of 20)	3.4 - 76.4	5
Natural Moisture Content at test	2 – 9.5	5

 Table 7: Summary of insitu and exsitu soil testing for Blisworth Limestone Formation

As expected in most instances the strata graduates from residual weathered soils to rock. Initially the weathered strata are noted to be more granular and fractured tending to more intact sections with depth.

No obvious visual or olfactory evidence of contamination was identified within any of these deposits encountered during the ground investigation.

5.1.7 Rutland formation

The Rutland formation was encountered in two forms a weathered form and a solid form. This formation was more typically encountered more towards the southern part of the proposed road development.

5.1.7.1 Weathered Rutland Formation

The Rutland formation was often encountered in its weathered state directly below the Oadby member in the southern areas of the site and are indicated to be present from a minimum top depth of between 0.70m to 2.00m (WS04, WS05, WS06, WS07, WS08 and WS09). However, typically, the depth to the top of the weathered Rutland formation is approximately 1.30 - 1.60m bgl.

The deposits encountered typically comprised a firm to stiff green grey silty clay or green grey slightly sandy gravelly silt, or an extremely weak yellow laminated siltstone. A summary of the in-situ in the weathered Rutland Formation is presented in Table 8 below and are included within Appendix E.

Table 8: Summary of insitu soil testing for weathered Rutland Formation

Soil parameters	Range	No tests
SPT 'N' values	8 – 50	23
Stiffness term	Soft to very stiff	

One soil sample of these deposits was sent for contamination screening testing.

5.1.7.2 Solid Rutland formation

Solid geology associated with the Rutland formation was encountered directly beneath the Blisworth limestone formation within trial pits 16 and 17, however it's thickness was not proven within these exploratory holes. The formation was also encountered below the solid Blisworth limestone formation within all rotary boreholes (BH01 – BH05).

The solid geology associated with the Rutland formation was encountered as medium strong to strong grey brown silty mudstone or an extremely strong grey limestone.

A summary of the in-situ and laboratory test results in the Rutland Formation is presented in Table 9 below and are included within the Appendix P.

The recorded in-situ test results and laboratory test results are detailed within the Factual Ground Investigation Report presented separately.

Soil parameters	Range	No tests
Moisture content (%)	8.3	1
SPT 'N' values (depth plots presented separately)	42 – 50	19
Point Load (I ₅₀) (MN/m ²)	0.09* – 3.63^ * mudstone ^ Limestone	4
Equivalent estimated UCS of Point Load (MPa) (using factor of 20)	1.8 – 72.6	
Natural Moisture Content at test	1.7 - 13	

Table 9: Summary of in-situ and laboratory test results for Solid Rutland Formation

As expected in most instances this indicates a progressive increase in SPT and corresponding strength of the strata with depth as the strata graduates from weathered to rock.

5.1.8 Results of soakage testing

Three soakaway tests were attempted close to locations where it is thought that storm water attenuation ponds or drainage swales might be located to check to see if any infiltration may occur and to confirm whether the ground conditions are suitable for the adoption of soakaway sustainable urban drainage systems.

The results of the soakage testing are summarised in the table below.

Trial pit	Geological unit	Test result (m/s)
TP22	Oadby Member (cohesive)	Insufficient drop in water level. Unable to calculate infiltration rate by extrapolation due to lack of soakage.
TP23	Oadby Member (cohesive)	*2.13x10 ⁻⁶
TP26Oadby Member (cohesive)Insufficient drop in water level. Unable to calculate infiltration rate by extrapolation due to lack of soakage.		
Notes: * The infiltration rate was extrapolated to obtain the infiltration rate. Test was not completed sufficiently as insufficient soakage achieved.		

5.2 Groundwater

Groundwater was encountered during the investigation as detailed in the table below.

Table 11: summary of groundwater strike and rise during groun	d investigation
---	-----------------

BH/TP	Stratum	Strike (m bgl)	Level (mAOD)	Rise (m)	Level (mAOD)
BH02	PRF	25.20	96.25	1.60	97.85
BH03	BLF	8.00	111.60	0.30	111.90
BH05	RF	9.00	92.76	1.00	93.76
WS06	WRF	3.50	93.65	-	-
Notes: GT = Glacial Till, WRF = Weathered Rutland Formation, PRF = Possible Rutland Formation, RF = Rutland Formation and BWL = Blisworth Limestone Formation					

Where not listed, exploratory holes did not encounter groundwater strikes during drilling. It should be noted that the speed of drilling and casing of holes can often mask minor seepages and water strikes. The addition of air mist flush during rotary coring to advance the hole may obscure minor water strikes, however major water strikes would be evident.

It should be noted that groundwater levels might fluctuate for a number of reasons including in the short term the prevailing weather conditions immediately before and during investigation and monitoring works and longer term seasonal variations should be expected.

The results of the subsequent groundwater monitoring and well surveying exercise are summarised in Table 12.

Table 12: Summary of groundwater monitoring

Monitoring well	Response Zone (m bgl)	Strata	Ground Level elevation (m AOD)	Monitored Groundwater Depth Range (mb GL)	Monitored Groundwater Elevation (m AOD)
BH01	10.00 – 20.00	BWL	119.70	16.53 to 17.45	103.17 to 102.25
BH02	20.00 - 30.00	PRF	121.45	20.12 to 20.21	101.24 to 101.33
BH03	8.00 – 15.00	BWL/RF	119.60	12.33 to 12.56	107.27 to 107.04
BH04	7.00 – 11.00	RF	115.71	10.12 to 9.40	105.59 to 106.31
BH05	8.00 – 12.00	RF	101.76	6.85 to 7.10	94.91 to 94.66
WS01	1.00 – 2.50	GT	120.71	Dry	-
WS02	3.00 - 5.00	GT	119.35	1.18 to 3.05	118.17 to 116.30
WS03	1.00 - 3.00	GT	115.32	3.00 (Damp Base)*	112.32
WS04	1.00 – 2.00	GT/WRF	104.35	dry to 1.87	102.45 to 102.48
WS05	2.00 - 4.00	WRF	102.94	3.95 to dry	98.99 to 98.95
WS06	2.00 - 4.00	WRF	97.15	2.36 to 2.62	94.75 to 94.53
WS07	1.00 – 2.50	WRF	102.01	1.91 to 2.07	100.10 to 99.94
WS08	1.00 – 3.00	WRF	101.76	2.65 to 2.70	99.11 to 99.06
WS09	1.00 – 3.00	GT/WRF	113.77	dry to 3.08	110.69 to 110.68
WS10	2.00 - 4.00	GT	117.97	2.75 to 3.23	115.22 to 114.74
WS11	3.00 - 4.53	GT	121.33	Dry	116.80
WS12	3.00 - 5.00	GT	119.74	3.58 to 4.80	116.16 to 114.94

* Was noted to be dry three out of four visits

Notes: GT = Glacial Till, WRF = Weathered Rutland Formation, PRF = Possible Rutland Formation, RF = Rutland Formation and BWL = Blisworth Limestone Formation

The findings appear to confirm the site has localised perched water within discrete pockets of granular material within the Oadby Member and weathered zones of the Rutland Formation. Additionally, localised seepages from the cohesive Oadby Member may have also accumulated within the base of standpipes instrumented within these cohesive deposits. The variable nature of the granular and cohesive strata present throughout the Oadby Member deposits results in pockets of water bearing granular strata and pore water release, which are not thought to be linked or consistent across the site.

Deeper installed instruments placed within rotary boreholes within the Blisworth limestone and Rutland Formation (BH01 and BH02, near the Roade railway cutting) suggest a continuous and deeper water table is present within these strata at depths of approximately 101.24mAOD to 103.17mAOD. Deeper instruments within BH03, BH04 and BH05, (installed within the Rutland Formation) towards the central and southern half

of the development suggest that the deeper water table is in hydraulic connectivity with these.

It should also be appreciated that some of the instrumentation installed cover large response zones including some more permeable strata trapped between less permeable strata. If the more permeable strata yield water these standpipes fill up to the draining layer trapped in the less permeable mudstone surrounding them below and therefore maintain what appears to be a water table, which may not reflect reality and possibly only represent perched water confined by cohesive strata above and below.

Following purging of three well volumes, six water samples were obtained from monitoring instrumentation for contamination screening testing. No obvious visual or olfactory contamination was identified when taking these samples.

5.3 Ground gas regime

The results of the ground gas monitoring and testing carried out are given in Appendix F. The maximum results are recorded in Table 13.

Borehole	Response zone (m)	Probable source(s) of ground gas	Number of monitoring visits	Methane (%) (max)	Carbon dioxide (%) (max)	Oxygen (%) (min)	Flow rate (l/hr) (max)	Monitored Water level (m bgl)
BH01	10.00 - 20.00	None identified	4	0.0	0.2	20.8	0.1	16.53 to 17.45
BH02	20.00 – 30.00	None identified	4	0.0	0.4	16.8	0.1	20.21 to 20.12
BH03	8.00 – 15.00	None identified	4	0.0	0.6	19	0.1	12.33 to 12.56
BH04	7.00 – 11.00	None identified	4	0.0	0.9	20.0	0.1	10.12 to 9.40
BH05	8.00 – 12.00	None identified	4	0.0	0.5	19.1	0.2	6.85 to 7.10
WS01	1.00 – 2.50	None identified	4	0.0	1.7	2.8	0.2	Dry
WS02	3.00 – 5.00	None identified	4	0.0	2.2	15.8	0.3	1.18 to 3.05
WS03	1.00 – 3.00	None identified	4	0.0	2.4	18.2	0	3.00
WS04	1.00 – 2.00	None identified	4	0.0	1.3	19.4	0.1	1.90 to 1.87

Table 13: Summary of gas monitoring results

Borehole	Response zone (m)	Probable source(s) of ground gas	Number of monitoring visits	Methane (%) (max)	Carbon dioxide (%) (max)	Oxygen (%) (min)	Flow rate (l/hr) (max)	Monitored Water level (m bgl)
WS05	2.00 - 4.00	None identified	4	0.0	1.8	17.1	0	3.95 to 3.99
WS06	2.00 - 4.00	None identified	4	0.0	1.4	17.8	0.2	2.40 to 2.62
WS07	1.00 – 2.50	None identified	4	0.0	1.9	12.5	0.3	1.91 to 2.07
WS08	1.00 – 3.00	None identified	4	0.0	2.5	14.8	0.1	2.65 to 2.70
WS09	1.00 – 3.00	None identified	4	0.0	1.0	18.5	0.1	3.08 to 3.09
WS10	2.00 - 4.00	None identified	4	0.0	2.7	14.0	0.2	2.75 to 3.23
WS11	3.00 - 5.00	None identified	4	0.0	4.0	13.6	0.2	4.53
WS12	3.00 – 5.00	None identified	4	0.0	9.1	11.2	0	3.58 to 4.80

No obvious sources of gas were identified during the investigation and the results detailed above are believed to represent the natural soil gas conditions. Gas monitoring visits were undertaken during periods of rising, constant and falling pressures of between 1007 and 1018mbar.

5.4 Visual/olfactory evidence of soil and groundwater contamination

No visual or olfactory evidence of soil or groundwater contamination was encountered or identified during the investigations.

5.5 Ground model

In summary, the ground conditions underlying the proposed bypass route appear to comprise relatively thin agricultural topsoil which is underlain by variable thicknesses of cohesive low permeability Oadby Member (Glacial Till) which extends across the entirety of the proposed development. Minor localised pockets of Glaciofluvial deposits, are restricted to a localised area approximately half way along the highway alignment.

Possible made ground and definitive made ground have been identified in two areas of the proposed route. Firstly, possible made ground, which is assumed to be reworked natural glacial deposits from the existing railways cutting appears to have been placed upon the natural deposits of Glacial Till at the crest of the cutting in the vicinity of positions TP3, BH01, WS11, TP4, BH02 and WS12. Secondly, made ground was also identified within the disused railway line in the southern part of the site, in the vicinity of

TP16 and TP16A. This was identified as limestone cobbles and boulders which were used for railway ballast laid directly upon to natural strata.

Weathered zones of bedrock geology were typically encountered underlying the Oadby Member, however in several positions TP15, TP16 and TP17, the weathered Blisworth limestone formation was encountered directly beneath the topsoil.

Available information from the exploratory hole logs identifies that the BLF was encountered at greater depths (typically 4.00m to 4.50m within BH03, BH04 and BH05) in the southern region of the route. However, in the northern half of the route the BLF was encountered at depths slightly greater (typically 6.7m to 9.00m in BH01 and BH02, respectively).

This in turn is underlain by the Rutland Formation which was encountered at depths of 17.5m and 18.65m within BH01 and BH02, respectively. Within BH03, BH04, BH05, the Rutland Formation was encountered at shallower depths (13.3m, 10m and 6.50m), respectively.

The exploratory positions appear to confirm that the site has localised perched water in granular pockets within the glacial till and other shallower deposits. Available information within deeper boreholes suggests that there is a possible continuous water table at depth within the Blisworth Limestone Formation and Rutland Formation underlying the site.

However it is considered unlikely that the encountered groundwater beneath the site is linked to surface water receptors in the vicinity of the site. The only surface water receptor within the vicinity of the site is a drain that runs northwest to southeast through the middle section of the bypass. During the walkover of the site the drain was noted to be dry and as such is likely to only flow during periods of heavy rainfall and is not considered to be connected to groundwater beneath the site.

6 QUANTITATIVE RISK ASSESSMENT

In line with CLR11 (EA, 2004a), there are two stages of quantitative risk assessment, generic and detailed. The GQRA comprises the comparison of soil, groundwater, soil gas and ground gas results with generic assessment criteria (GAC) that are appropriate to the linkage being assessed. This comparison can be undertaken directly against the laboratory results or following statistical analysis depending upon the sampling procedure that was adopted.

6.1 Linkages for assessment

Section 5.5 outlines the refined conceptual model/ ground model which identified the linkages that required assessment after the findings of the site investigation had been considered. These linkages together with the method of assessment are presented in Table 14.

Potentially relevant pollutant linkage	Assessment method
1. Inhalation of vapour	Human health GAC outlined in Appendix J for soil and groundwater based on indoor inhalation exposure to vapour-phase volatile organic compounds (VOC).
2. Inhalation of fugitive dust	Direct comparison of laboratory results of soil samples compared to human health GAC in Appendix J for a proposed commercial and industrial end use.
3. Ingestion and absorption by direct contact; including hand to mouth contact and absorption through the skin	Direct comparison of laboratory results of soil samples compared to human health GAC in Appendix J for a proposed commercial and industrial end use .
4. Uptake of contaminants by vegetation potentially impacting plant growth	Comparison of soil data to GAC in Appendix K.
5. Migration by surface run-off; including in suspension or solution into nearby surface water receptors	Has been considered qualitatively using soil results. Consideration of soil results presented within Appendix H.
6. Migration into groundwater (principal aquifer); including leaching in the unsaturated zone and diffusion in the saturated zone.	Has been considered qualitatively using soil and groundwater results. Comparison of groundwater data to GAC in Table 1 of Appendix L.
7. Transportation via the land drains in to the sewerage	Has been considered qualitatively using soil results.

Table 14: Identified potentially relevant pollutant linkages

Potentially relevant pollutant linkage	Assessment method
system or to outlets into the environment (drainage ditches and streams).	Consideration of soil results presented within Appendix H.

As no structures are to be developed on the site risks from ground gases are not considered to exist but may pose a potential risk to construction workers during development.

6.2 Methodology and results

The methodology and results of the GQRA are presented for each relevant pollutant linkage in turn.

6.2.1 Inhalation of vapour

Contaminated made ground was not encountered during the site investigation and this was further proven in the chemical testing as all VOC results were noted to be below the laboratory's limit of detection. Additionally, no visual or olfactory evidence of impacted soil was observed during the site investigation and photo ionisation detection results all returned 0.00 parts per million (ppm) as such this pathway will not be considered further.

6.2.2 Inhalation of fugitive dust

Chemical testing of soil samples obtained from the site were below the relevant generic assessment criteria and therefore, it is considered any dust generated from the site would not be detrimental to human health and as such, this pathway will not be considered further.

6.2.3 Ingestion and absorption by direct contact; including hand to mouth contact and absorption through the skin

End users are defined as those who are exposed to sources of contamination on a regular and predictable basis. In the case of developments for commercial end use, the critical receptor is defined within SR3 as a 16 to 65 year old female.

The chemical test results have been compared directly to the appropriate GAC for each contamination, based on a Soil Organic Matter (SOM) of 1%. The direct comparison table, which presents the chemical laboratory data set compared against the relevant GAC, is included within Appendix J.

All samples are below the GAC and the results of the assessment indicate the strata as encountered are suitable for use.

Based on the above assessment, no potentially significant risks associated with the soil contamination have been identified and it is considered that the site may be regarded as suitable for the proposed end use. It should however be noted that investigations should be undertaken in the areas that were inaccessible, however given the history of the site defined within the desk based studies it is not considered likely that any significant

contamination sources or contaminants would be encountered within these areas, indeed it is understood that part of the area is noted to be occupied by an unusually undisturbed habitat (see separate ecological assessments for more information).

6.2.4 Uptake of contaminants by vegetation potentially impacting plant growth

The results have been compared with the GAC presented in Appendix K for this linkage. The results indicate that a relevant pollutant linkage is unlikely to exist associated with phytotoxic effects. No exceedances were recorded and therefore it is considered that this pollutant linkage does not exist, therefore this will not be considered further.

6.2.5 Migration by surface run-off

The potential for leaching has been considered qualitatively using soil results. No relevant sources of contamination were identified at the site that would be considered as creating a risk via surface runoff.

Analysis of TPHCWG, PAHS, pesticides and herbicides were typically at the Limit of Detection (LOD) within the soil samples tested with occasional minor detections of PAHs (maximum total PAH of 2.07mg/kg).

Analysis of metals indicated that the metals concentrations detected in soils were typically less than expected background concentrations within the area as shown in Table 15.

Analyte	Maximum Soil Concentration detected (mg/kg)	Background soil concentration (mg/kg)	Source
Arsenic	11	15-25	Envirocheck
Cadmium	1.3	<1.8	Envirocheck
Chromium	39	60-90	Envirocheck
Lead	96	<100	Envirocheck
Nickel	33	30-45	Envirocheck
Copper	33	21-35	BGS website – background map
Selenium	<1	0.29	UK soil observatory

Table 15: Comparison of soil concentrations against background concentrations

It is therefore considered that the sample results do not indicate that a risk to drains via surface runoff exists.

6.2.6 Migration into groundwater (Principal Aquifer)

No relevant sources of contamination were identified at the site. Soil concentrations at the site are generally typical of those recorded in natural strata and topsoil are at concentrations less than expected background concentrations as indicated in the

previous section. The results of the comparison of the groundwater results to the UK Drinking water standards indicate there are several exceedances of the standards as noted in the table below.

Analyte	U.K./EC DWS	No. samples screened	No. exceedances of EQS	Location of highest concentration (value)
Sulphate	250 (mg/l)	6	4	WS10 (1520mg/l)
Boron	1000 (µg/l)	6	2	BH01 (2220µg/l)
Nickel	20 (µg/l)	6	2	WS02 (29 µg/l)
Selenium	24 (µg/l)	6	1	WS02 (24 µg/l)

Table 16: Summary of groundwater contaminant exceedances

The Blisworth Limestone Formation is a member of the Blue Lias Group which is known to be a pyritic strata with naturally occurring sulphates which are known to precipitate out within these deposits. In addition when pyrite is oxidised this leads to the formation of sulphuric acid, which reduces the pH of groundwater, as observed within the laboratory data presented in Appendix L. Therefore the presence of naturally occurring pyrite and sulphates would explain the slightly elevated levels of sulphate in groundwater.

The mobility of heavy metals typically increases with a reduction of PH so it is possible that the slightly elevated metals present within some of the groundwater samples is a result of reduced pH concentrations leaching metals from naturally occurring soils.

Slightly elevated concentrations of boron were only noted within BH01 and BH02 which are located on both sides of the Roade railway cutting. It is plausible that the elevated concentrations within the groundwater at this location may be associated with the railway line, where track levels are some 15m below surrounding ground levels at the highway over bridge crossing point and only some 1-3m above the monitored groundwater levels in the two deep holes located either side of the cutting from which these samples were taken. Boron based compounds are typically used as a non-toxic woodworm and dry root treatment and are likely to have been used on the railway for the treatment of railway sleepers.

The identified nickel and selenium exceedances are considered to be marginal and as such are unlikely to represent a risk to the aquifer given the low permeability of the superficial deposits present across the site. Table 15 has also indicated that the detected soil concentrations are typically lower than expected background concentrations.

Therefore it is considered that the site investigation has not indicated there to be significantly elevated concentrations present in groundwater beneath the site that has been caused by anthropogenic sources of contamination along the length of the road bypass. Risks to the Principal Aquifer are considered to be low.

6.2.7 Transportation via the land drains in to the sewerage system or to outlets into the environment (drainage and streams)

The potential for leaching has been considered qualitatively using the soil results presented in Appendix H.

As can be seen in section 6.2.5 and Table 15 the soil tests undertaken indicate that concentrations of contaminants are typically below expected background concentrations and are therefore are also considered unlikely to represent a risk via this potential pollutant linkage.

6.3 Summary of quantitative risk assessment

The site is currently predominately used for arable farm land with the exception of the area of the Roade railway cutting (not part of the site but straddled by a proposed bridge) and the former railway line towards the southern end of the proposed route.

Intrusive investigations carried out across the site have confirmed that the site is directly underlain by natural soils and no contaminated strata were identified during the field works.

Furthermore, comparison of laboratory testing results of soils obtained from the ground investigation indicate that pollutant linkages are unlikely to exist for risk to human health, phytotoxic effects, or the underlying aquifer. Exceedances of metals and sulphates were identified within groundwater, however, due to the generally minor nature of exceedance, general lack of onsite sources, they are not considered to pose a risk. Elevated boron concentrations detected in groundwater in BH01 and BH02 were considered to have potentially been caused by the railway line that runs between them.

7 ASSESSMENT OF POTENTIAL LAND CONTAMINATION

7.1 Potential sources of contamination

Likely ground contamination resulting from the current and former land uses has been determined from the desk study research and the relevant Department of the Environment Industry Profiles.

The Assessment of Potential Land Contamination based upon site walkover and available data collated is included within the Preliminary Sources Study Report for the site ref: 313418 - 02 (00) presented separately within the Contaminated Land Risk Register. This register has been updated to reflect the findings in these recent investigations and an updated version is included in Appendix R.

This report updates the initial assessment by taking account of:

 the Quantitative Risk Assessment of the chemical analysis of soil and groundwater samples taken from the recent supplementary ground investigations and assessment of gas monitoring results also undertaken as part of the recent supplementary ground investigations.

In summary, the ground investigation has not identified any significant areas of Made Ground or potential contamination confirming as expected that the vast majority of the site is undisturbed Greenfield land underlain by clean natural geological strata and as such negligible risk has been determined to exist to end users or controlled waters.

The information detailed above has been used to update the Contaminated Land Risk Assessment (Conceptual Site Model) Matrix included in Appendix R.

The main identified risks are discussed below in more detail however reference should be made to the risk matrix to understand all of the risks assessed

7.2 Preliminary contaminated land risk assessment

7.2.1 Risks to human health during construction

The human health assessment presented in Section 6.2.3 has not indicated there to be any risks to construction workers as no contamination has been identified, the strata present are for the most part natural and scheme will be built using clean site won materials or / and suitable clean imported material. Therefore the risk to human health during construction is considered to be negligible.

7.2.2 Risk to human health post construction

The human health assessment presented in Section 6.2.3 has not indicated there to be any risks to end users.

Given the nature of the proposed scheme is for a highway, human exposure to soils and groundwater will be extremely low with soils covered by hard standing minimising any potential contact pathways.

7.2.3 Risks to local ecology and landscape planting

The phytotoxicity assessment presented in Section 6.2.4 indicated that potential risks to plant growth are unlikely to exist. Given that the crops and flora are thriving upon the site and that no significant Made Ground or contamination has been observed that the scheme will be built using clean site won materials or / and suitable clean imported material the risk to the local ecology from contamination is considered to be Negligible.

7.2.4 Risks to surface water

No risks to surface water receptors were identified to the site in its current conditions as indicated in sections 6.2.5 and 6.2.7.

The greatest risks to surface waters are from potential uncontrolled release of silt, created during construction activities and subsequent effects on aquatic flora and fauna. This will be controlled by a suitable site specific construction environmental management plan and code of practice.

7.2.5 Risks to groundwater

No risks to groundwater are currently considered to exist at the site. Careful consideration will need to be given to suitability of imported materials if required. Also controls will be required during the construction programme to ensure that any potentially contaminative substances, particularly fuels, are contained sufficiently to prevent any uncontrolled release to the aquifer.

7.2.6 Risks due to ground gas

The anticipated geology is not indicative of widespread presence of strata likely to naturally degrade and produce harmful soil gases. The environmental database report has identified a landfill to the south east of the site. Monitoring of ground gas on the site has yielded no concentrations of methane gas, very low concentrations of carbon dioxide (normal conditions) and no to very low flow conditions and as such indicates that there are no on site sources of soil gas and that the landfill south west of the site is unlikely to pose a risk to the site or construction workers involved on the project. Indeed the presence of low permeability cohesive soils would inhibit movement of ground gas from any off site sources.

As the proposed scheme design for the site is a highway, the exposure to ground gases posing a risk to human health post-construction is considered to be negligible.

In regards to ground gases posing a risk to workers during the construction it is considered that there is a very low risk to personnel from asphyxiation where they have to enter below ground excavations or in ground inspection chambers, provided suitable atmosphere testing is carried out and confined spaces protocols are observed.

7.2.7 Risk to buried structures and services

The soils beneath the site are known to include naturally occurring sulphates and as such in ground concrete will need to be designed to accommodate the risks represented by contact with such sulphates.

As such careful consideration should be given to the design chemical and sulphate class of concrete used within the development particularly when in contact with the ground.

In addition consideration will need to be given to the potential for sulphate induced heave especially where the materials noted above are used within a cut and fill program where soils would be significantly disturbed allowing a greater oxidation potential.

This assessment of the potential for chemical attack on buried concrete is based on current BRE guidance. The desk study and site walkover indicate that, for the purposes of this assessment of the aggressive chemical environment, the site should be considered as a Greenfield that has not been subject to previous industrial development.

A suite of chemical analyses appropriate to this site classification was carried out on samples within BH01, BH02 and BH03, targeted at the location of the bridge.

The results of chemical tests carried out indicate 2:1 water soil extract sulphate contents of up to 652mg/l with pH values in the range of 6.63 to 9.04. In addition groundwater analysis indicates sulphate concentrations up to 1520mg/l.

Based on the characteristic values above for soil and groundwater, the initial Aggressive Chemical Environment for Concrete (ACEC) Classification is AC-3, with a Design Sulphate Class of DS-3. This assumes nominally mobile groundwater conditions.

Due to the potential for the pyrite bearing materials within the natural geology across the site, characteristic values of Total Potential Sulphate (TPS) and Oxidisable Sulphides (OS) have also been determined for the site.

The results of the laboratory testing indicate maximum values of 4.32% (TPS) and 3.91% (OS). As the oxidisable sulphides is greater than 0.30% within all the samples, with the exception of one within BH02 at 12.27m bgl, pyrite s probably present. On this basis the Aggressive Chemical Environment for Concrete Classification is AC-4 with a Design Sulphate Classification of DS4.

It is recommended that further testing is undertaking at detailed design stage to confirm this over a broader selection of sample depths.

8 GEOTECHNICAL SITE ASSESSMENT

8.1 Preliminary geohazard and geotechnical assessment

Using the available information and taking into account the ground model for the site, the Preliminary Geotechnical Risk Register presented within the Preliminary Resources Study Report (313418-02) has been revised and updated and is presented within Appendix Q and highlights several potential risks associated with the site. The main identified risks are discussed below in more detail however reference should be made to the risk matrix to understand all of the risks assessed.

8.1.1 Mining and natural cavities

The site is not within an area affected by coal mining or brine extraction. The geology is not conducive to the formation of large natural cavities. This has been confirmed by the ground investigation which has confirmed the ground model.

8.1.2 Man made voids or obstructions

No voids have been identified during the ground investigation.

8.1.3 Earthworks

Cut to fill earthworks are anticipated to be required to be undertaken to achieve the proposed redevelopment vertical and horizontal alignments.

In order to reduce the risk of excessive cost for offsite disposal and on site importation it is assumed that;

- site won materials will be utilised
- and that a cut to fill volume balance will be achieved.

The ground investigation has revealed that the site is underlain by the Oadby Member (Glacial Till) which is cohesive in nature and therefore moisture content sensitive. Many UK cohesive soils tend to be wet of the optimum for compaction and therefore there is considered to be a moderate risk that these soils may need soil modification or stabilisation to render them suitable for reuse within structural fill beneath buildings and hard standing. Further classification and earthworks investigations and trials are required to fully inform detailed design and specification, however the materials identified would be classed as a Class 2 cohesive general fill material.

When considering lime modification or stabilisation account must be taken of the risks of creating heave through the chemical reaction with naturally occurring sulphates within the clays soils present, therefore prior testing will be required to confirm if this risk is present so that it may be mitigated in the mix design.

8.1.4 Existing cut slopes

A deep railway cutting is located near the northern end of the proposed route and is considered to be stable, as no signs of instability were identified during the walkover or intrusive investigation. However, it should be noted that limited access was available when viewing the cutting from the public right of way footbridge.

8.1.5 Gradient on site

Cut and fill earthworks may be required to develop the site into a suitable highway vertical alignment, as such, slopes may be created as part of the design. No earthworks plan has been provided to RSK, as such, no detailed slope assessment has been made. Ground conditions identified to date do not suggest that the existing ground represents significant or unusual risks.

8.1.6 As-dug cut material suitability

The site is underlain by natural soils which are considered to be suitable for reuse. These are predominately cohesive in nature and are these sensitive to moisture content change. Further earthwork investigation is required to appropriately classify materials to be reused for the proposed scheme.

8.1.7 Embankment stability

Preliminary road layouts have been provided and it is considered that minor cut and fill works are required to complete the proposed road. No detailed design of proposed embankments has been provided to RSK and as such, no detailed stability assessment can be made.

If embankments are to be constructed it is assumed that clean site won materials will be suitable for reuse within the embankment construction to avoid excessive costs for importation of materials to form the embankment. The design of the embankment will need to take account of the classification of the materials being utilised for its construction as well as the founding stratum. Options for increasing side slopes and reducing footprint and volume may be explored and these may include reinforced embankments (geogrids) or soil stabilisation (lime and cement) or even retaining walls if required.

The risk of failure of embankments is increased where fine grained soils are used to construct them particularly if insufficient compaction and drainage is designed and the works proceed too quickly. Therefore it is recommended that staged construction is undertaken and that granular basal layers is installed and linked to the wider drainage network to avoid the build-up of pore water pressures in fine soils as works progress. This will aid and speed up consolidation and increase stability. Alternatively or additionally the use of soil stabilisation or reinforced earth might be considered.

Embankment slopes must be designed appropriately with regard to the stability of the soils being used to construct the embankment and take account of the strength of the underlying foundation soils. However it is understood that they will have been designed with a conservative slope angle of no steeper than 1:3 which is normally acceptable in

the long term for formation of embankments using most British soils upon reasonable founding stratum.

Drainage will need to be carefully designed to cope with surface water and to avoid runneling and softening of the slope faces and softening in the foundation soils, in particular at the toe of the slopes.

8.1.8 Bridge foundations

At this stage given the depth of the cutting, its steep sides, the importance of the infrastructure and taking into account the strata identified to be present on each side it is recommended that a piled foundation solution is adopted. This should extend foundations down into the solid strata at depth and ensure that the bridge loads are taken down below the base of the cutting avoiding loading the cutting side slopes.

Preliminary recommendations for the design and construction of pile foundations in relation to the ground conditions identified beneath the site are set out in Table 17. The preliminary recommendations given below are based on the field results obtained on site today and will subject to confirmation in the final report.

Design/construction considerations	Design/construction recommendations
Pile type	The construction of both driven and bored (CFA or rotary) piles is considered technically feasible at this site.
Possible constraints on choice of pile type	Given that the site is located adjacent to the railway lines/embankment, it is likely that vibration/noise associated with pile driving may not be acceptable particularly as the bridge will span a deep cutting. CFA borings may struggle to penetrate the limestone to sufficient depths to avoid loading the cutting face. There it is considered that rotary bored piles may be required to ensure sufficient depth into rock head if high loads are required to be supported.
Temporary casing	Given a likely presence of groundwater strikes within overlying made ground strata, bored piles will require temporary casing throughout this depth.
Limitations afforded by ground	For the purpose of assessing preliminary pile capacities the probable made ground has been presumed not to contribute to the load-carrying capacity for the piles. At this time, no negative skin friction has been considered due to presence of significant depths of probable made ground. It should be considered or included in the final design by others.
For the purpose of assessing preliminary pile capacities the	The presence of any buried sub-structures or other obstructions within made ground may lead to some difficulty during piling. Where buried obstructions are encountered, it will be necessary to either relocate the pile(s) or make allowance for removing the obstruction.
Hard strata	An allowance should be made for chiselling or slow boring within 'rock' bands within the clay formation and the thicker beds of Limestone and Mudstone.

Table 17: Preliminary advice for the design and construction of piled foundations

Design/construction considerations	Design/construction recommendations		
Pile design parameters	Pile design parameter	CFA	
for Clay	Undrained shear strength c _u (kN/m ²)	4.5*SPT N Values (for Clay) and triaxial results	
	Adhesion factor α	0.50	
	End bearing factor (N _c)	9	
Pile design parameters	Shaft friction factor (ks.tan δ)	0.80	
assumed for Limestone and Mudstone	Limiting end bearing (kN/m ²)	12500	
General parameters	Limiting concrete stress (kN/m ²)	7.5N/mm ²	
	Limiting shaft friction (kN/m ²)	110	
	Global margin of safety	2 (with load testing) and 2.5 (without)	
Special precautions relating to bored pile	Bored pile concrete should be cast as soon after completion of boring as possible and in any event the same day as boring.		
shafts and bases	Prior to casting the base of the pile bore should be clean, otherwise a reduced safe working load will be required. Similarly, if the pile bore is left open the shaft walls may relax/soften, leading to a reduced safe working load.		

The design procedure for piles varies considerably, depending on the proposed type of pile. However, for illustrative purposes gives likely working pile loads for traditional bored, cast-in-situ concrete piles of various diameters and lengths, based on the design parameters given in Table 18. For this purpose, the soil profile in boreholes (BH01 & BH02) has been considered. It has been assumed that little or no positive skin friction will be obtained from ground level to about 5.0m depth due to possible thick made ground. The preliminary pile loads below are based on forming rock sockets a minimum 2 x up to 5 x pile diameter into the bedrock.

Depth of pile (m)	Diameter of pile (m)	End bearing Qb (kN)	Shaft Friction Fs (kN)	Ultimate Pile Capacity (kN)	Allowable Pile Capacity (kN) FoS = 2.0	Allowable Pile Capacity (kN) FoS = 2.5
	0.30	884	362	1246	623	498
	0.35	1203	423	1625	813	650
11	0.40	1571	483	2054	1027	822
11	0.45	1988	544	2532	1266	1013
	0.50	2454	604	3058	1529	1223
	0.60	3534	725	4259	2130	1704
12	0.30	884	438	1321	661	529

Table 18: Illustration of typical pile working loads for CFA piles

Depth of pile (m)	Diameter of pile (m)	End bearing Qb (kN)	Shaft Friction Fs (kN)	Ultimate Pile Capacity (kN)	Allowable Pile Capacity (kN) FoS = 2.0	Allowable Pile Capacity (kN) FoS = 2.5
	0.35	1203	511	1713	857	685
	0.40	1571	584	2155	1077	862
	0.45	1988	657	2645	1322	1058
	0.50	2454	730	3184	1592	1274
	0.60	3534	876	4410	2205	1764
	0.30	884	521	1404	702	562
	0.35	1203	608	1810	905	724
13	0.40	1571	694	2265	1133	906
13	0.45	1988	781	2769	1385	1108
	0.50	2454	868	3322	1661	1329
	0.60	3534	1041	4576	2288	1830
	0.30	884	611	1495	747	598
	0.35	1203	713	1916	958	766
14	0.40	1571	815	2386	1193	954
14	0.45	1988	917	2905	1452	1162
	0.50	2454	1019	3473	1737	1389
	0.60	3534	1222	4757	2378	1903
	0.30	884	709	1593	796	637
	0.35	1203	827	2030	1015	812
45	0.40	1571	946	2516	1258	1007
15	0.45	1988	1064	3052	1526	1221
	0.50	2454	1182	3636	1818	1455
	0.60	3534	1418	4953	2476	1981

It should be stressed that the above capacities do not take into consideration pile group effects which is more pronounced for a large number of closely spaced piles.

Notwithstanding the above, it is recommended that a specialist piling contractor should be contacted at an early stage for their advice on the most suitable pile type and capacity for the strata encountered at this site. In particular the piling specialist will need to confirm the ability of their equipment to form of rock sockets within the bedrock and depth of penetration practically achievable based on their previous experience in the local area.

8.1.9 Cutting stability

The preliminary highway alignment appears to suggest that little or only minor cut and fill works are required. No detailed geometry of proposed cuttings has been provided to

RSK and as such, no detailed stability assessment has been made. However it is understood that they will have been designed with a conservative slope angle of no steeper than 1:3 which is normally acceptable in the long term for most British soils.

8.1.10 Earthworks – Materials reuse

In this case it is expected that embankments will be constructed from site-won arisings from the cutting works.

It is anticipated that the majority of soils excavated from the site will be cohesive soil associated with the Glacial Till and would be considered to be a Class 2 material. It is expected that granular fractions of the Glaciofluvial Deposits potentially present within localised areas could be suitable for reuse within embankment fill as a Class 1 general fill if encountered in any significant quantity.

There is considered to be a low to moderate risk that the underlying mudstone and perhaps the overlying cohesive till (derived in part from the underlying strata) will include high sulphates. As such careful consideration should be given to the design and specification of earthworks given to the potential for sulphate induced heave especially where the materials noted above are used within a cut and fill program where soils would be significantly disturbed allowing a greater oxidation potential. Soil stabilisation techniques will also require careful consideration for the same reasons. Such materials would however be suitable for reuse within landscape features where the potential for heave does not present a risk.

According to the CL:AIRE guidance "The Definition of Waste: Development Industry Code of Practice" (version 2, March 2011), any material that may be otherwise considered by the Environment Agency as waste (such as made ground), if dealt with in accordance with the Code of Practice under a Materials Management Plan (MMP) will not be considered as waste if used for the purposes of land development. Any Clean and Naturally occurring material may be reused on the site of origin without the need to be included within an MMP.

8.1.11 Aggressive soil chemistry

The soils underlying the site were anticipated to include naturally elevated levels of sulphates (gypsum) and ground concrete mix will be designed to accommodate these risks. The assessment is presented with Section 7.6 has indicated a classification of DS4 and AC4.

In addition consideration will need to be given to the potential for sulphate induced heave especially where the materials noted above are used within a cut and fill program where soils would be significantly disturbed allowing a greater oxidation potential, this can be a particular problem where lime stabilisation is utilised to improve soil strengths.

8.1.12 Highway construction

As the site requires cut to fill earthworks to achieve the required development levels, it is anticipated that engineering earthworks design specification will be provided to cover these elements and is likely to include a performance specification for the formation levels beneath the highways in both cut and filled embankment areas.

Embankment earthworks designs will need to be checked for foundation bearing, settlement and slope stability to ensure that the embankments will not suffer detrimental settlement or failure once constructed. Similarly any new cuttings and existing cuttings (Roade Cutting) will also need to be assessed for long term stability.

In the 1m of current existing ground level the exploratory holes have revealed a soil profile comprising topsoil, over glacial till. The potentially poorest sub-grade material within this profile is the topsoil, however this is assumed to be stripped prior to construction.

In pavement design terms, the groundwater conditions are anticipated to comprise a low water table, i.e. at least 1m below the pavement formation level.

The estimated minimum, equilibrium soil-suction, California bearing ratio (CBR) value for the soils and groundwater conditions described above under a completed pavement is 3 %, based upon Table C1 in TRRL (1984) Report LR1132.

The results of in-situ DCP testing indicate that the near surface soils (assuming a cut of 450m) have a CBR value that ranges from between 3.5% to 30%, with most results falling in around 3.5-7% the results are summarised in Table 19.

Test location	Material type	Minimum CBR value determined at or just below anticipated formation level
TP01	2	6%
TP02	2	10%
TP03	2	7%
TP04	2	16%
TP04 (test 2)	2	20%
TP05	2	5%
TP07	2	5%
TP12	2	5%
TP13	2	3.5%
TP14	2	4%
TP15	2	30%
TP17	2	30%
TP20	2	9%
TP26	2	7%

Table 19: Summary of CBR values derived from in-situ DCP tests

The recommended sub-grade soil CBR value for road pavement design is therefore 3%. This value assumes that during construction the formation level will be carefully compacted and any soft spots removed and replaced with well-compacted granular fill.

It is normal practice to assume the sub-grade will be frost-susceptible as a minimum requirement for adoption and as such the thickness of sub-base must be sufficient to

give a total thickness of non-frost-susceptible pavement construction over the soil of not less than 450 mm.

8.1.13 Groundwater levels

The Oadby Member is an unproductive strata, and monitoring events have shown that localised perched water is generally only present where discrete localised granular pockets are present within these deposits. However, these do not seem to be connected to form a shallow water table.

Monitoring events have indicated a deeper confined groundwater table is present within the Blisworth Limestone Formation/Rutland Formation with groundwater levels in range of between 101.30mAOD to 102.50mAOD within the area of Roade Cutting (BH01 and BH02, respectively). As the proposed highway alignment route progresses southwards, the groundwater table appears to rise with water levels ranging from between 108.8mAOD to 116.58mAOD.

Assuming that a high perched groundwater table is present, cutting slopes could require drainage systems to be designed and installed to intersect water bearing confined strata intersected by the cutting slopes and to filter it away longitudinally and horizontally to avoid softening and degradation of more susceptible softer strata beneath. Alternative face or cut off drains behind the cut face might also be considered as alternatives depending upon the detailed value engineering design goals.

The scheme design should also attempt to avoid cutting below major water tables to avoid dewatering and drainage problems. In this case it is unlikely that the main groundwater table will be breached.

8.1.14 Drainage

Soakaway tests within shallow strata (Oadby Member) displayed poor infiltration characteristics as such; alternative drainage solutions may be required.

9 REUSE OF MATERIALS

9.1 Reuse of suitable materials

It is understood that no soil wastes are anticipated to be generated from the site with a complete cut to fill balance being achieved in modelling.

As the site has not been previously developed all excavation works are expected to generate only clean and naturally occurring soils.

Under the Waste Framework Directive naturally occurring soils are not considered waste if re-used on the site of origin. Therefore it should not be necessary to either obtain a licence or prepare a Materials Management Plan in accordance with the CL; AIRE Code of Practice.

9.2 Waste for landfill disposal

Whilst it is not anticipated that any soils will be removed to landfill an initial assessment of waste classification has been undertaken using the soil contamination data. This is presented within Appendix S. The results suggest that the soils tested would be classified as Non Hazardous for disposal. Given that arisings are anticipated to be natural strata it is possible that they could be classified as inert waste, however full Waste Acceptance Criteria analysis would be required to confirm this.

9.3 Landfill tax

Waste producers disposing of material to landfill are required to pay landfill tax by HM Revenue and Customs.

The tax is chargeable by weight (tonnage) and two rates apply, either standard or lower rate. The lower rate only applies to those less polluting wastes as set out in the Landfill Tax (Qualifying Material) Order 2011, which include naturally occurring rock and soil, concrete, some minerals, some furnace slags and ash, and some low-activity organic compounds. Evidence confirming that the waste qualifies for the lower rate will be required, and standard rate tax will apply for the whole waste load for any loads of mixed waste.

Currently (since 1 April 2017), standard rate landfill tax is £86.10 per tonne.

The lower rate of landfill tax applicable to less polluting wastes (i.e. 'inert' wastes) remains at £2.70 per tonne.

Material disposed of at a soil treatment centre will not be subject to landfill tax.

10 CONCLUSIONS

The geology of the site comprises of predominately glacial till across the entirety of the site, with some Glaciofluvial deposits within the centre. This is underlain by the Blisworth limestone formation, which is all underlain by the Rutland Formation.

The site is primarily considered to be Greenfield and there is little evidence to suggest that there are any significant potential sources of contamination likely to be present that would detrimentally impact upon the proposed scheme design, end users, controlled water or neighbours within areas of the site that were investigated.

Minor exceedances of the groundwater GACs for some metals and sulphates were identified, however due to the general lack of on-site sources, low permeability nature of the near surface strata and potential for pyritic bearing strata within Blue Lias Formation (Blisworth Limestone), this is not considered to be a risk. Ground concrete must be designed accordingly.

No specific geo-hazards or risks were identified that would affect the proposed scheme design, construction and alignment.

All geotechnical risks are normal to a project of this type and would be anticipated to be resolved using normal civil engineering techniques.

Piled foundations are likely to be required to support the bridge across the deep railway cutting (Roade Cutting) to ensure loads are transferred down to strata beneath the slope face to avoid slope instability risks and to provide sufficient bearing for the bridge structure.

A cut and fill earthworks balance is anticipated to be achievable as all materials should be suitable for use as general fill for the construction of the highway. The 1:3 side slopes currently proposed for all cuttings and embankments are anticipated to be suitable, however, slope stability assessments will be required at detailed design stage as the design evolves to ensure that all slopes are stable.

Groundwater levels and soil gas concentrations do not appear to present any unacceptable risk to the proposed scheme.

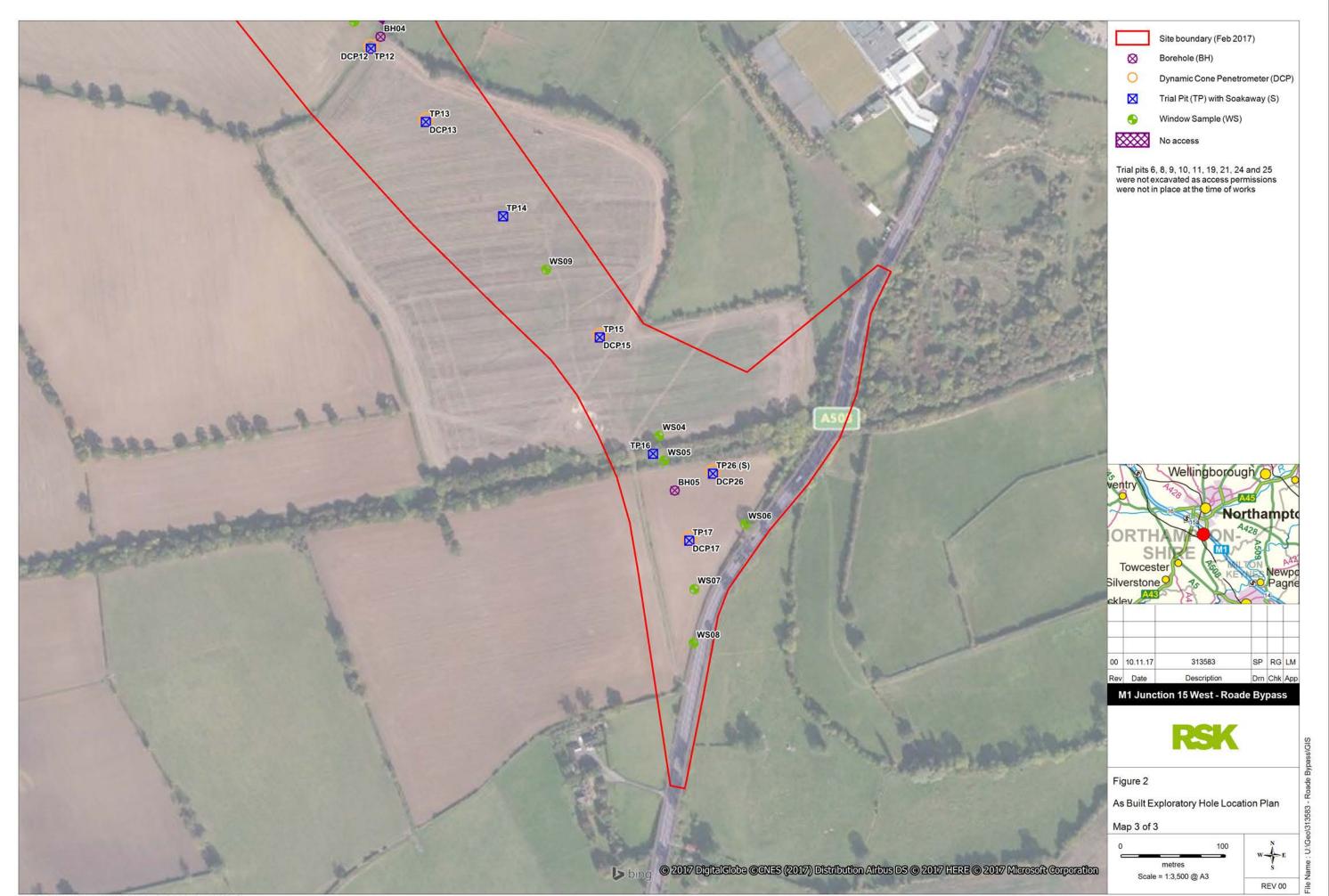
The soils underlying the site were anticipated to include naturally elevated levels of sulphates (gypsum) and ground concrete mix will be designed to accommodate these risks. The assessment is presented with Section 7.6 has indicated a classification of DS4 and AC4

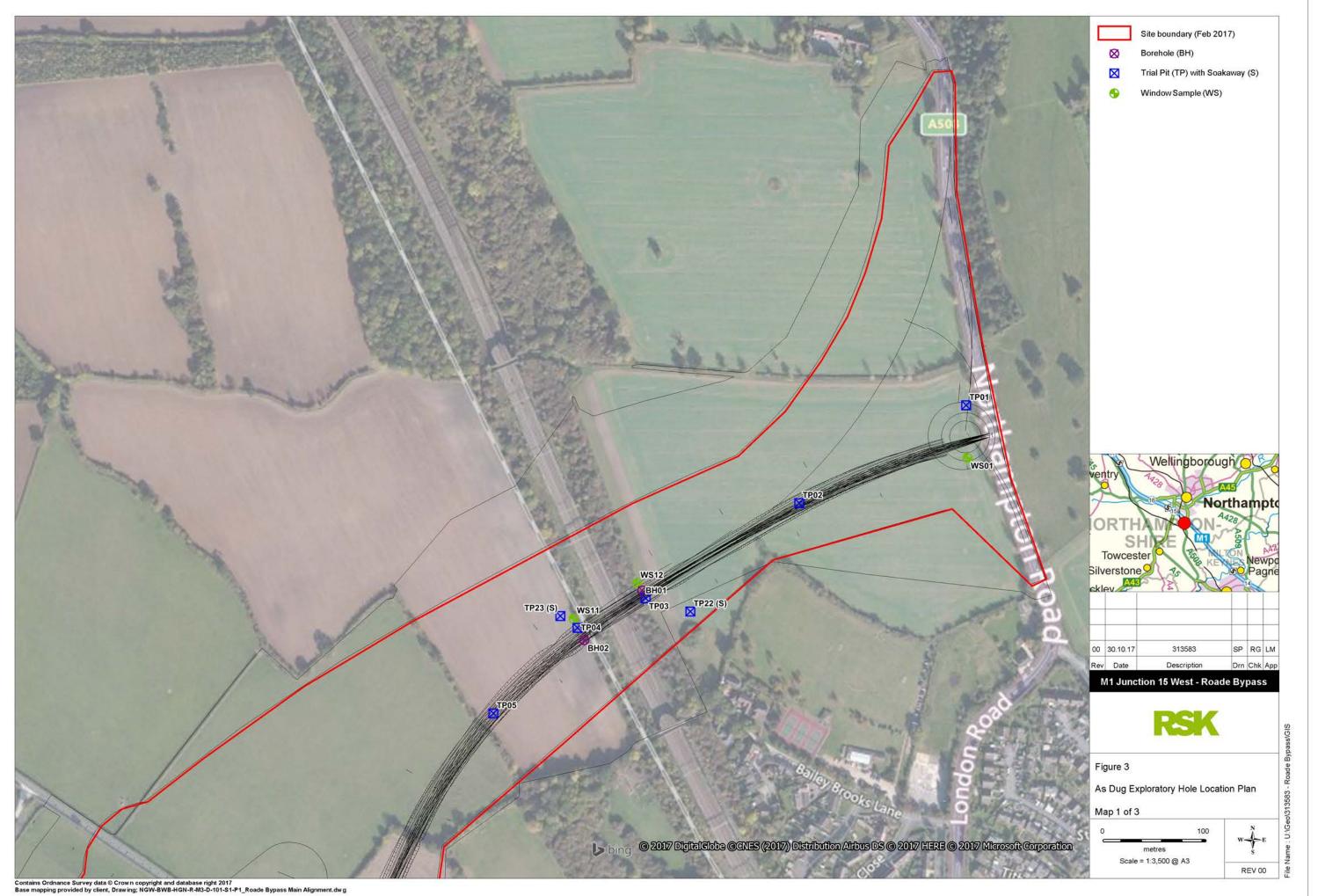
11 RECOMMENDATIONS

11.1 General recommendations

Some of the key recommendations are summarised below. Many of the technical or advice recommendations have not been included below. The whole of the report should be read to identify all recommendations and advice.


- It is recommended that the findings of the Contaminated Land Risk Assessment are confirmed and agreed with the regulatory authorities.
- It is recommended that at detailed design stage (Post DCO) a site wide Earthworks Specification is prepared which should include testing frequency requirements and performance criteria for the various elements of the scheme design and may well require on site compaction trials to be undertaken to inform the specification.
- At detailed design stage it is recommended that cutting slope stability assessments are carried out to refine the design.
- At detailed design stage it is recommended that embankment design geometries should be checked for slope stability and settlement. However it should be understood that the stability of an embankment will be a function of its geometry, the materials with which it is built, the degree of compaction applied, speed of construction and the foundation strata and underlying groundwater table on to which it is formed. This information will be required to feed into the earthworks specification.
- Drainage will need to be designed with care due to the poor drainage infiltration of the underlying shallow soils.
- In ground concrete should be designed to resist elevated sulphates with a minimum mix design of **DS-4 AC-4** to allow for the potential for naturally occurring sulphates within the underlying strata.


FIGURES



	Dynamic Cone Penetro	mere		~ /	
	Trial Pit (TP) with Soak	away	(S)		
	Window Sample (WS)				
	No access				
ex	8, 9, 10, 11, 19, 21, 24 cavated as access perr place at the time of wor	nissio			
,		X	Vo		
2	Wellingboroug	h	C	2	
~	7830	45	C	R	
~ ~	TRAD Nor	tha		oto	
	TRAD Nor	45	m	pto	
		tha	5	AAZ	
	TRAD Nor	tha	5	AAA VDG	
	Transformer Participation Part	tha	Nev	AAA VDG	
	Transformer Provide Pr	tha	Nev	AAA VDG	
	Transformer Provide Pr	tha	Nev	AAA VDG	
	313583	428 A509 450	Nev Pag	AA2 vpc gne	
e	All States and All St	45 tha 128 500 50 50 50 50 50 50 50 50 50 50 50 50	Nev Pai RG Chk	AAA wpc gne	
e	313583	45 tha 128 500 50 50 50 50 50 50 50 50 50 50 50 50	Nev Pai RG Chk	AAA wpc gne	
e	All States and All St	45 tha 128 500 50 50 50 50 50 50 50 50 50 50 50 50	Nev Pai RG Chk	AAA wpc gne	
e	All States and All St	45 tha 128 500 50 50 50 50 50 50 50 50 50 50 50 50	Nev Pai RG Chk	AAA wpc gne	
e	All States and All St	45 tha 128 500 50 50 50 50 50 50 50 50 50 50 50 50	Nev Pai RG Chk	AAA wpc gne	
	313583 Description	sp br br br br br br br	RG	AAA wpc gne	
	All States and All St	sp br br br br br br br	RG	AAA wpc gne	
	313583 Description	sp br br br br br br br	RG	AAA wpc gne	
	313583 Description	sp br br br br br br br	RG Chk	LM App	
	313583 Description tion 15 West - Road	sp br br br br br br br	RG Chk	AAA wpc gne	File Name : U:\Geo\313583 - Roade Bypass\GIS

Contains Ordnance Survey data © Crown copyright and database right 2017

APPENDIX A SERVICE CONSTRAINTS

- 1. This report and the site investigation carried out in connection with the report (together the "Services") were compiled and carried out by RSK Environment Limited (RSK) for Roxhill Developments Limited in accordance with the terms of a contract between RSK and the "client", dated 8th November 2016. The Services were performed by RSK with the skill and care ordinarily exercised by a reasonable environmental consultant at the time the Services were performed. Further, and in particular, the Services were performed by RSK taking into account the limits of the scope of works required by the client, the time scale involved and the resources, including financial and manpower resources, agreed between RSK and the client.
- 2. Other than that expressly contained in paragraph 1 above, RSK provides no other representation or warranty whether express or implied, in relation to the Services.
- 3. Unless otherwise agreed the Services were performed by RSK exclusively for the purposes of the client. RSK is not aware of any interest of or reliance by any party other than the client in or on the Services. Unless expressly provided in writing, RSK does not authorise, consent or condone any party other than the client relying upon the Services. Should this report or any part of this report, or otherwise details of the Services or any part of the Services be made known to any such party, and such party relies thereon that party does so wholly at its own and sole risk and RSK disclaims any liability to such parties. Any such party would be well advised to seek independent advice from a competent environmental consultant and/or lawyer.
- 4. It is RSK's understanding that this report is to be used for the purpose described in the introduction to the report. That purpose was a significant factor in determining the scope and level of the Services. Should the purpose for which the report is used, or the proposed use of the site change, this report may no longer be valid and any further use of or reliance upon the report in those circumstances by the client without RSK 's review and advice shall be at the client's sole and own risk. Should RSK be requested to review the report after the date hereof, RSK shall be entitled to additional payment at the then existing rates or such other terms as agreed between RSK and the client.
- 5. The passage of time may result in changes in site conditions, regulatory or other legal provisions, technology or economic conditions which could render the report inaccurate or unreliable. The information and conclusions contained in this report should not be relied upon in the future without the written advice of RSK. In the absence of such written advice of RSK, reliance on the report in the future shall be at the client's own and sole risk. Should RSK be requested to review the report in the future, RSK shall be entitled to additional payment at the then existing rate or such other terms as may be agreed between RSK and the client.
- 6. The observations and conclusions described in this report are based solely upon the Services which were provided pursuant to the agreement between the client and RSK. RSK has not performed any observations, investigations, studies or testing not specifically set out or required by the contract between the client and RSK. RSK is not liable for the existence of any condition, the discovery of which would require performance of services not otherwise contained in the Services. For the avoidance of doubt, unless otherwise expressly referred to in the introduction to this report, RSK did not seek to evaluate the presence on or off the site of asbestos, electromagnetic fields, lead paint, heavy metals, radon gas or other radioactive or hazardous materials.
- 7. The Services are based upon RSK's observations of existing physical conditions at the Site gained from a walk-over survey of the site together with RSK's interpretation of information including documentation, obtained from third parties and from the client on the history and usage of the site. The Services are also based on information and/or analysis provided by independent testing and information services or laboratories upon which RSK was reasonably entitled to rely. The Services clearly are limited by the accuracy of the information, including documentation, reviewed by RSK and the observations possible at the time of the walk-over survey. Further RSK was not authorised and did not attempt to independently verify the accuracy or completeness of information, documentation or materials received from the client or third parties, including laboratories and information services, during the performance of the Services. RSK is not liable for any inaccurate information or conclusions, the discovery of which inaccuracies required the doing of any act including the gathering of any information which was not reasonably available to RSK and including the doing of any independent investigation of the information provided to RSK save as otherwise provided in the terms of the contract between the client and RSK.
- 8. The phase II or intrusive environmental site investigation aspects of the Services is a limited sampling of the site at pre-determined borehole and soil vapour locations based on the operational configuration of the site. The conclusions given in this report are based on information gathered at the specific test locations and can only be extrapolated to an undefined limited area around those locations. The extent of the limited area depends on the soil and groundwater conditions, together with the position of any current structures and underground facilities and natural and other activities on site. In addition chemical analysis was carried out for a limited number of parameters [as stipulated in the contract between the client and RSK] [based on an understanding of the available operational and historical information,] and it should not be inferred that other chemical species are not present.
- 9. Any site drawing(s) provided in this report is (are) not meant to be an accurate base plan, but is (are) used to present the general relative locations of features on, and surrounding, the site.

APPENDIX B SUMMARY OF LEGISLATION AND POLICY RELATING TO CONTAMINATED LAND

Part IIA of the Environmental Protection Act 1990 (EPA) and its associated Contaminated Land Regulations 2000 (SI 2000/227), which came into force in England on 1 April 2000, formed the basis for the current regulatory framework and the statutory regime for the identification and remediation of contaminated land. Part IIA of the EPA 1990 defines contaminated land as 'any land which appears to the Local Authority in whose area it is situated to be in such a condition by reason of substances in, on or under the land, that significant harm is being caused, or that there is significant possibility of significant harm being caused, or that pollution of controlled waters is being or is likely to be caused'. Controlled waters are considered to include all groundwater, inland waters and estuaries.

In August 2006, the Contaminated Land (England) Regulations 2006 (SI 2006/1380) were implemented, which extended the statutory regime to include Part IIA of the EPA as originally introduced on 1 April 2000, together with changes intended chiefly to address land that is contaminated by virtue of radioactivity. These have been replaced subsequently by the Contaminated Land (England) (Amendment) Regulations 2012, which now exclude land that is contaminated by virtue of radioactivity.

The intention of Part IIA of the EPA is to deal with contaminated land issues that are considered to cause significant harm on land that is not undergoing development (see Environmental Protection Act 1990: Part 2A Contaminated Land Statutory Guidance, April 2012). This document replaces Annex III of Defra Circular 01/2006, published in September 2006 (the remainder of this document is now obsolete).

Water Framework Directive (WFD)

The Water Framework Directive 2000/60/EC is designed to:

- enhance the status and prevent further deterioration of aquatic ecosystems and associated wetlands that depend on the aquatic ecosystems
- promote the sustainable use of water
- reduce pollution of water, especially by 'priority' and 'priority hazardous' substances
- ensure progressive reduction of groundwater pollution.

The WFD requires a management plan for each river basin be developed every six years.

Groundwater Directive (GWD)

The 1980 Groundwater Directive 80/68/EEC and the 2006 Groundwater Daughter Directive 2006/118/EC of the WFD are the main European legislation in place to protect groundwater. The 1980 Directive is due to be repealed in December 2013. The European legislation has been transposed into national legislation by regulations and directions to the Environment Agency.

Environmental Permitting Regulations (EPR)

The Environmental Permitting (England and Wales) Regulations 2010 provide a single regulatory framework that streamlines and integrates waste management licensing, pollution prevention and control, water discharge consenting, groundwater authorisations, and radioactive substances regulation. Schedule 22, paragraph 6 of EPR 2010 states: 'the regulator must, in exercising its relevant functions, take all necessary measures - (a) to prevent the input of any hazardous substance to groundwater; and (b) to limit the input of non-hazardous pollutants to groundwater so as to ensure that such inputs do not cause pollution of groundwater.'

Water Resources Act (WRA)

The Water Resources Act 1991 (Amendment) (England and Wales) Regulations 2009 updated the Water Resources Act 1991, which introduced the offence of causing or knowingly permitting pollution of controlled waters. The Act provides the Environment Agency with powers to implement remediation necessary to protect controlled waters and recover all reasonable costs of doing so.

Priority Substances Directive (PSD)

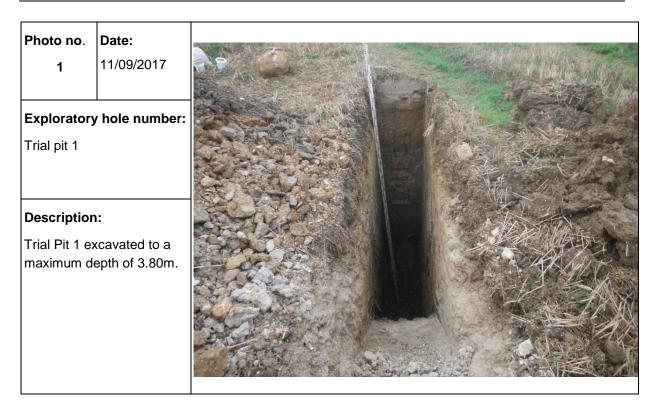
The Priority Substances Directive 2008/105/EC is a 'Daughter' Directive of the WFD, which sets out a priority list of substances posing a threat to or via the aquatic environment. The PSD establishes environmental quality standards for priority substances, which have been set at concentrations that are safe for the aquatic environment and for human health. In addition, there is a further aim of reducing (or eliminating) pollution of surface water (rivers, lakes, estuaries and coastal waters) by pollutants on the list. The WFD requires that countries establish a list of dangerous substances that are being discharged and EQS for them. In England and Wales, this list is provided in the River Basin Districts Typology, Standards and Groundwater threshold values (Water Framework Directive) (England and Wales) Directions 2010. In order to achieve the objectives of the WFD, classification schemes are used to describe where the water environment is of good quality and where it may require improvement.

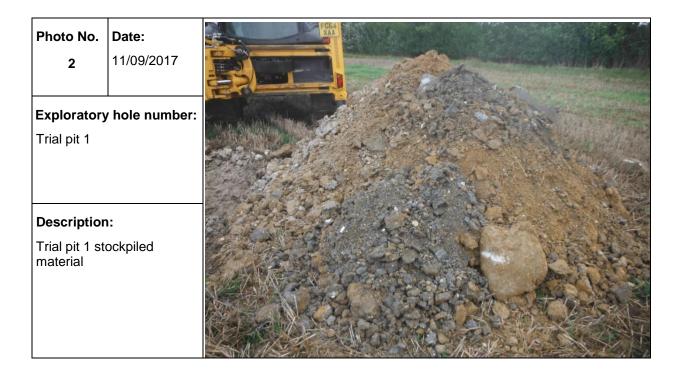
Planning Policy

Contaminated land is often dealt with through planning because of land redevelopment. This approach was documented in Planning Policy Statement: Planning and Pollution Control PPS23, which states that it remains the responsibility of the landowner and developer to identify land affected by contamination and carry out sufficient remediation to render the land suitable for use. PPS23 was withdrawn early in 2012 and has been replaced by much reduced guidance within the National Planning Policy Framework (NPPF).

The new framework has only limited guidance on contaminated land, as follows:

- *"planning policies and decisions should also ensure that:*
 - the site is suitable for its new use taking account of ground conditions and land instability, including from natural hazards or former activities such as mining, pollution arising from previous uses and any proposals for mitigation including land remediation or impacts on the natural environment arising from that remediation;




- after remediation, as a minimum, land should not be capable of being determined as contaminated land under Part IIA of the Environmental Protection Act 1990; and
- adequate site investigation information, prepared by a competent person, is presented".

APPENDIX C SITE PHOTOGRAPHS

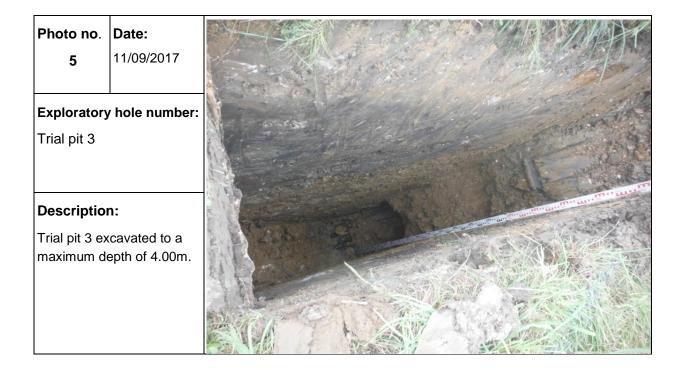

APPENDIX C EXPLORATORY HOLE PHOTOGRAPHS


Photo No.	Date:	
7	11/09/2017	
Exploratory	hole number:	A CARACTER AND THE AND
Trial pit 4		
Descriptio	n:	A STATE THE AND A STATE OF A STAT
Trial pit 4 ex maximum d	cavated to a epth of 3.80m.	

Photo no.	Date:	
9	11/09/2017	
Exploratory	hole number:	
Trial pit 5		
Description	n:	
	cavated to a	
maximum de	epth of 3.20m.	Provide the second states

Photo No.	Date:	
11	08/09/2017	
		A REAL PROPERTY AND A REAL
Exploratory	hole number:	A State of the sta
Trial pit 7		The second
		and the second sec
Descriptio	n:	eres and the second
Trial pit 7 ex	cavated to a	
maximum de	epth of 3.80m.	Children and the second s
		A THORE SET OFFICE AND
		A CARLE AND A CARLES AND A CARL

Photo no.	Date:
13	08/09/2017
Evolorator	
Trial pit 12	/ hole number:
Description	n: cavated to a
	epth of 3.60m.

Photo No.	Date:	
15	08/09/2017	
Exploratory	/ hole number:	
Trial pit 13		
Descriptio	n:	17 240 - main and a stand
	cavated to a	
maximum de	epth of 3.60m.	A series and a series of the series
		and the start of the second second second
		TARA A A A A A A A A A A A A A A A A A A

Photo no.	Date:		
17	07/09/2017		
Exploratory	y hole number:		
Trial pit 14			
			112/232
Descriptio	n:	PLANDS - S	A A TANK
	excavated to a	Part of the second second	
maximum d	epth of 3.60m.	S A A	

Photo No.	Date:	
18	07/09/2017	
Exploratory	/ hole number:	
Trial pit 14		
		Colores And and a second
Descriptio	n:	ALL STREET
Trial pit 14 stockpiled material		A CONTRACT OF A CONTRACT
materiai		

Photo No.	Date:	
19	07/09/2017	
Exploratory hole number:		
Trial pit 15		
Description:		Carlos and a construction of the construction
Trial pit 15 excavated to a maximum depth of 2.50m.		

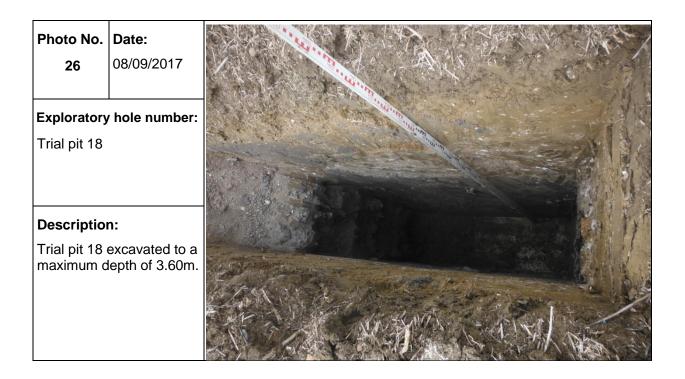

Photo no.	Date:	
21	07/09/2017	
Exploratory hole number:		A PARTICIPATION OF THE PARTICI
Trial pit 16		
Description:		
Trial pit 15 excavated to a		
maximum depth of 1.80m.		

Photo No.	Date:	
22	07/09/2017	
Exploratory hole number:		a the second
Trial pit 16		
		a start based a second
Description:		
Trial pit 16 stockpiled		
material		Charles and the state of the

Photo No.	Date:	
23	07/09/2017	
Exploratory	/ hole number:	
Trial pit 16A		
Description:		
Trial pit 16 excavated to a maximum depth of 0.50m.		

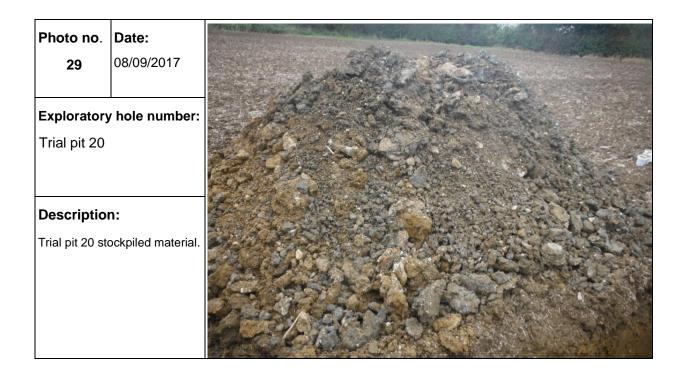


Photo No.	Date:	
27	08/09/2017	FXEAT
		The Part of the second
Exploratory	/ hole number:	
Trial pit 18		
Descriptio	n:	Constant Start And And And And
Trial pit 18 material.	stockpiled	
material.		E PARTY AND
		A PART AND A

Photo No.	Date:	The second second second second
28	08/09/2017	
Exploratory	/ hole number:	
Trial pit 20		
Descriptio	n:	
Trial pit 20 maximum c	excavated to a lepth of 3.80m.	

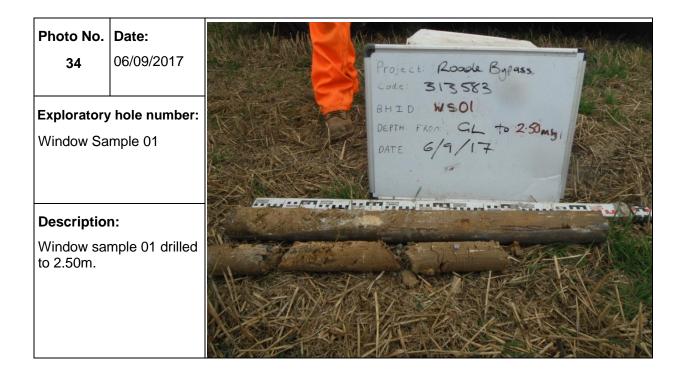


Photo No.	Date:		A C	- Handl		1
30	13/09/2017		気み	Mar Tol	A STATE	
			A Store	and the second		A REAL
Exploratory	hole number:		FRANK			
Trial pit 23			1		1	207
		A Contraction	- Martin	- And -		
		and the second		· 187 14		
Descriptio	n:	CONT.	1 Yaman	and a	1 1 66 -	
	excavated to a	is the states	and the th	me Jake	2 A A A A A A	1
maximum c and soakav	lepth of 3.00m vay test	ST. The St.	ALL TO	144		A
undertaken		A. Part	Sec.			R
		and the second	P. C. C.		Non a star	
			ar males to	1222	Section of	24

Photo No. 31	Date: 13/09/2017	
Exploratory Trial pit 23	/ hole number:	
Descriptio Trial pit 23 material.		

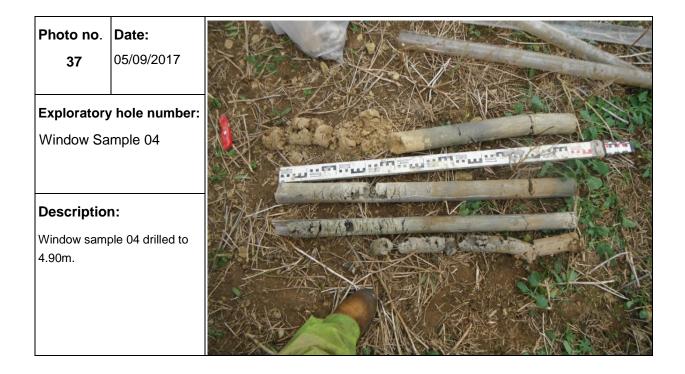
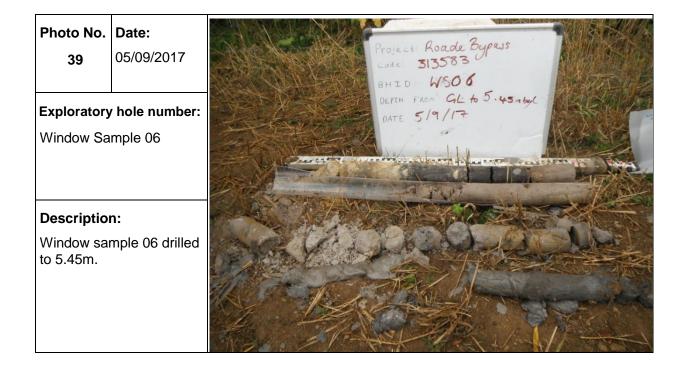
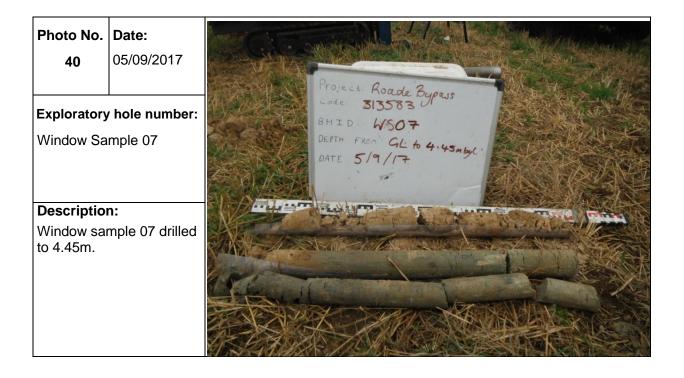
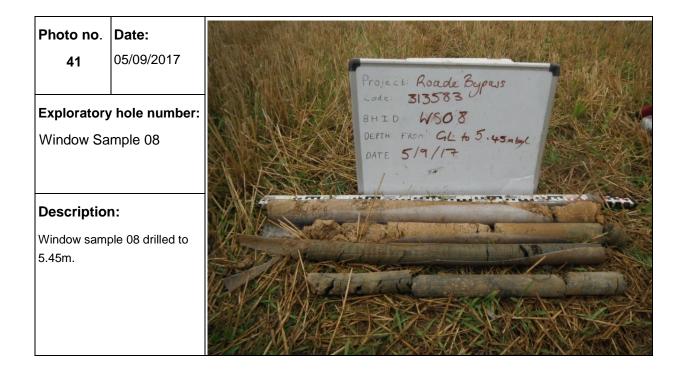
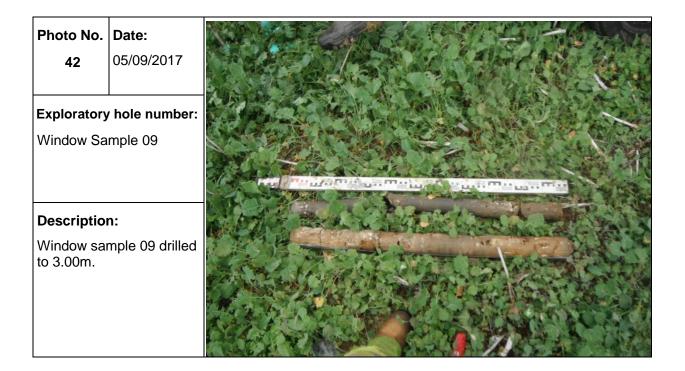

Photo No.	Date:	
32	13/09/2017	
Exploratory	hole number:	
Trial pit 26		
Description	n:	
Trial pit 26 maximum d	excavated to a lepth of 3.00m	

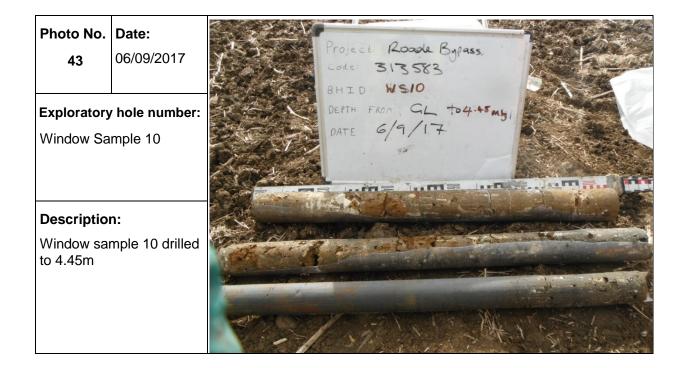
Photo no.	Date:	
33	13/09/2017	
	y hole number:	
Trial pit 26		
Descriptio	n:	
Trial pit 26 st	ockpiled material	

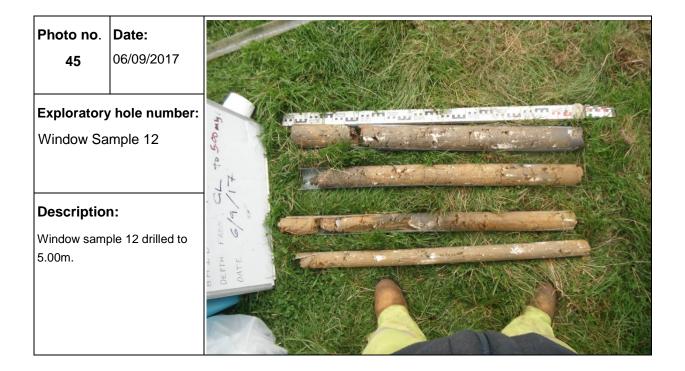


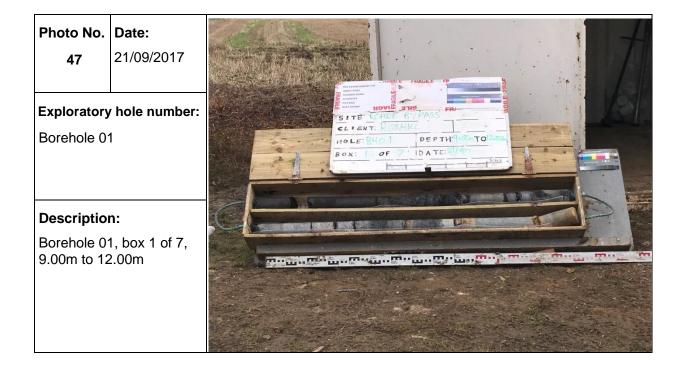

Photo No.	Date:	Project: Roade Bypass code: 313583
35	06/09/2017	code: 313583
		PHTD: WSO2
Exploratory	/ hole number:	DEPTH FROM GL to 5.45 mg1 DATE 6/9/17
Window Sa	mple 02	DATE OF T
		A starting and the second second
Description:		
Window sample 02 drilled		A Station And A Station
to 5.45m.		

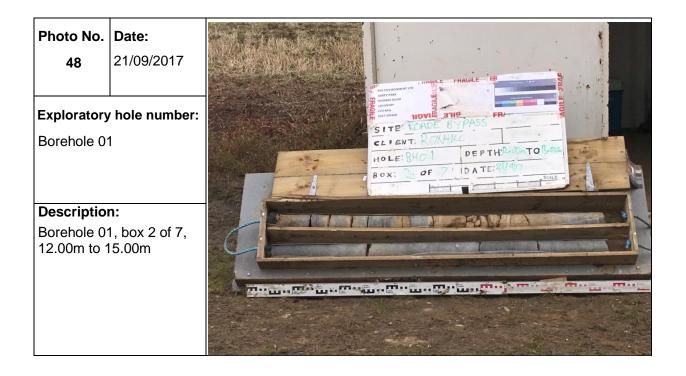


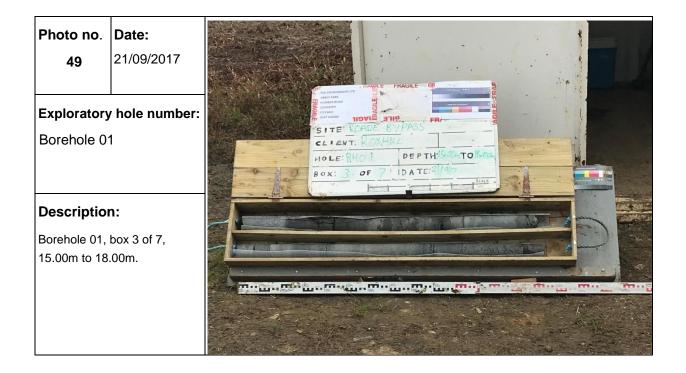


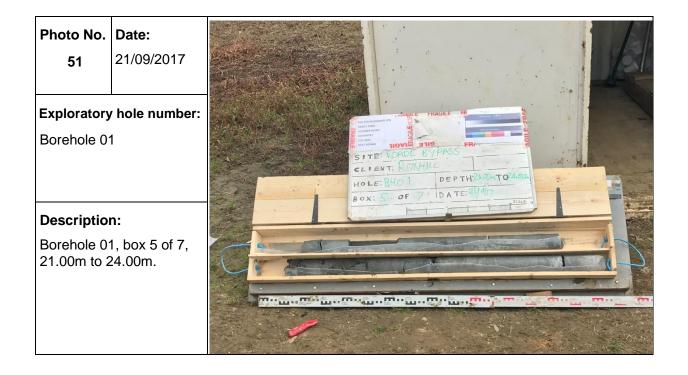


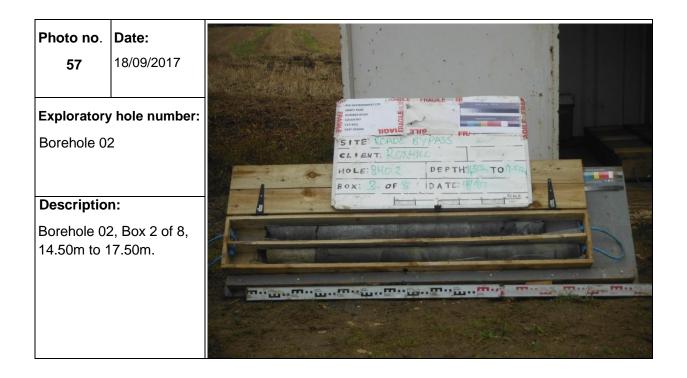


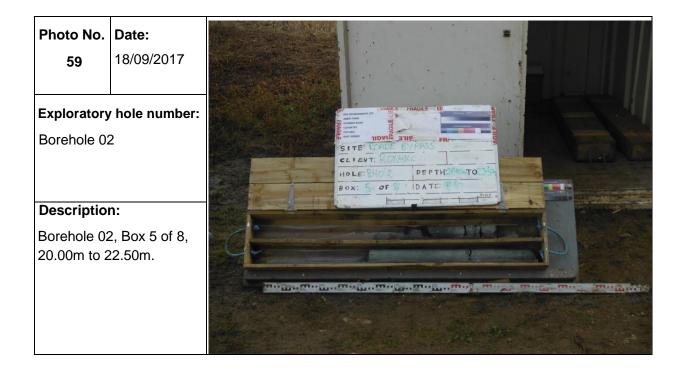


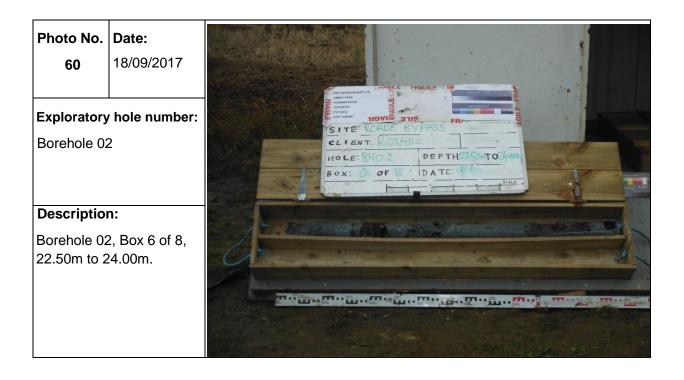


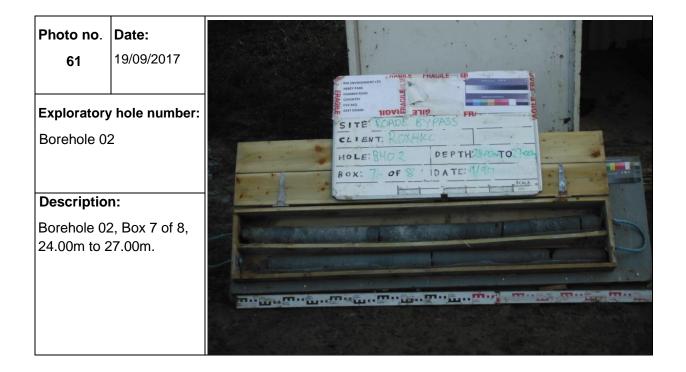


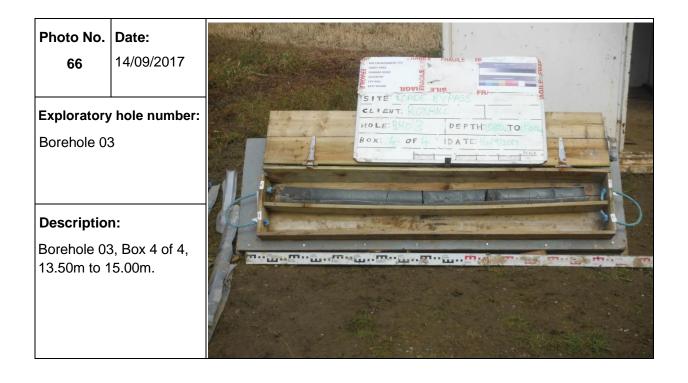


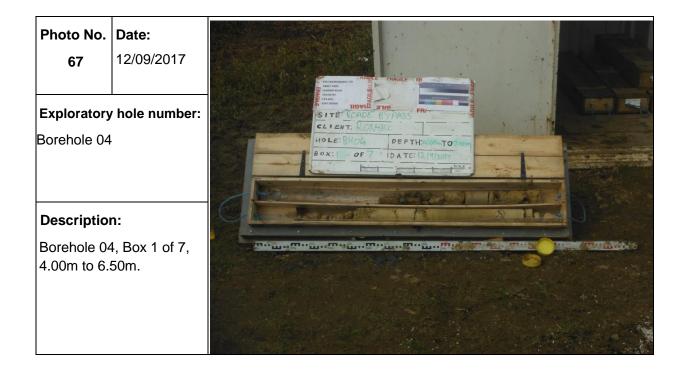





Photo No.	Date:	
55	15/09/2017	
		TALLE PRACHE ER
Exploratory	hole number:	
Borehole 02	2	SITE ROADE BYPASS CLIENT: ROXHILL
		HOLE: BHO 2 DEPTH: SOL TO I SQ
		BOX: 1. OF 8 ' ID ATE: 15/0/
Description	n:	
	2, Box 1 of 8,	
8.50m to 11	1.50m.	The Martine Mar


Photo No.	Date:	
56	15/09/2017	
Exploratory	/ hole number:	CLIENT: ROXHILL HOLE: BHO 2 DEPTHINS TO US
Borehole 02	2	BOX: 2. OF S' IDATE: SIGH
		Frank Contract State
Descriptio	n:	- IPH
Borehole 02 11.50m to 1	2, Box 2 of 8,	
11.001110	14.0011.	





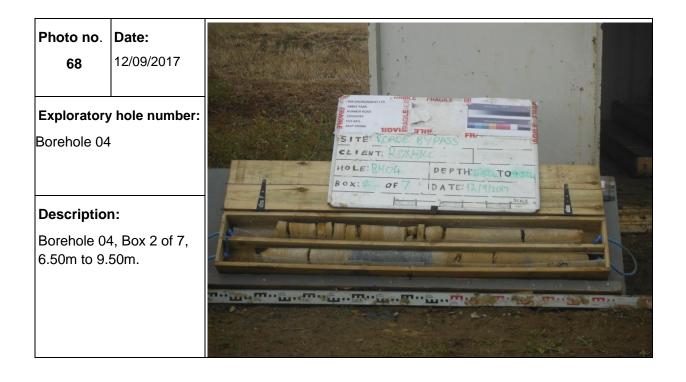
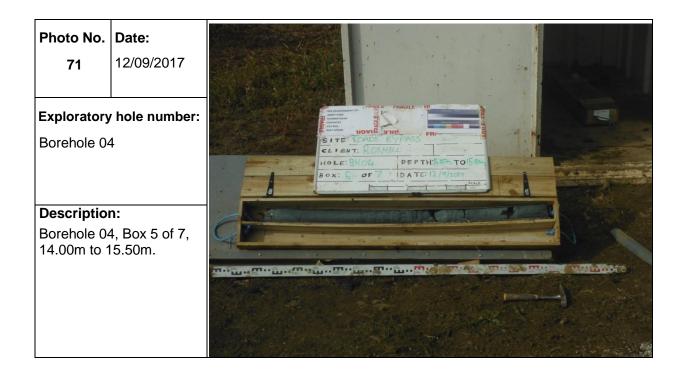
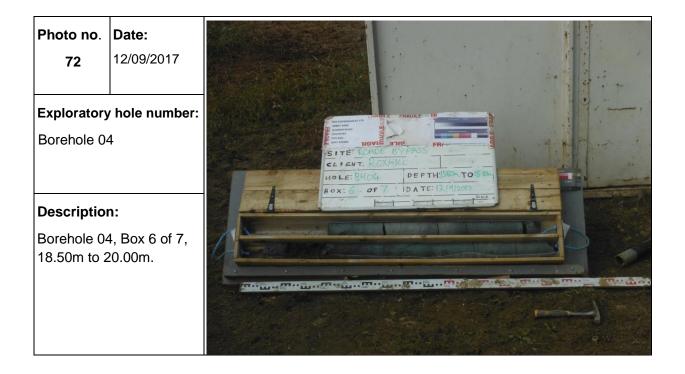
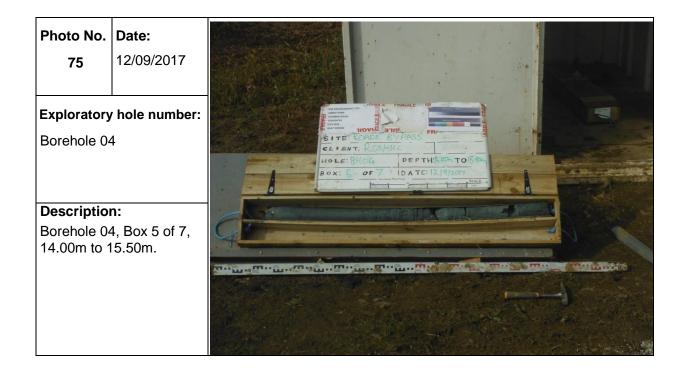
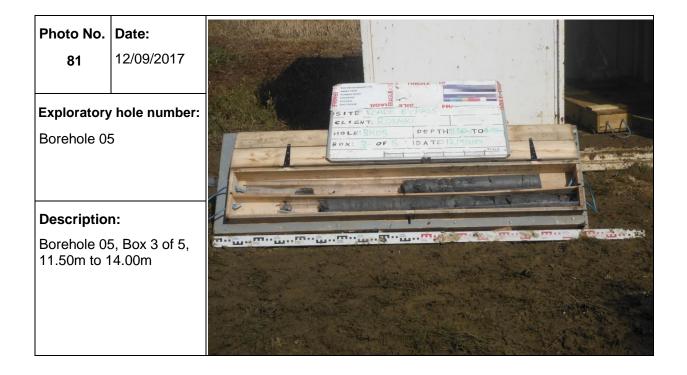

Photo No. 63	Date: 14/09/20147		FR/	
Exploratory Borehole 03	y hole number: 3	HOLE DEP BOX: OF IDAT		
Descriptio Borehole 03, to 7.50m.	n: Box 1 of 4, 4.50m			

Photo No.	Date:			PICE PHAGILE ER	and the second s
64	14/09/2017		AND	E BYPASS	
Exploratory	y hole number:			DEPTH: 7.50_T	
Borehole 0	3	Rept -	Box; 2 OF	4 10 ATE: 1419/201	SCALE .
			R. Maria	THE PROPERTY	A marsus
Descriptio	n:		and the factor of the second		CARACTER DE LA CARACT
Borehole 03 7.50m to 10	3, Box 2 of 4,	-5		19	6 10.









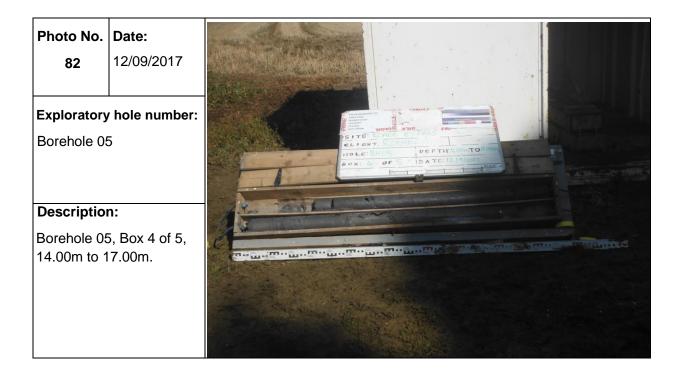


Photo No. 83	Date: 12/09/2017	
Exploratory Borehole 0	7 hole number:	SITE LARGE PETHONE
Description Borehole 05 17.00m to 2	5, Box 5 of 5,	

APPENDIX D RISK ASSESSMENT METHODOLOGY

CLR11 outlines the framework to be followed for risk assessment in the UK. The framework is designed to be consistent with UK legislation and policies including planning. Under CLR11, three stages of risk assessment exist: preliminary, generic quantitative and detailed quantitative. An outline conceptual model should be formed at the preliminary risk assessment stage that collates all the existing information pertaining to a site in text, tabular or diagrammatic form. The outline conceptual model identifies potentially complete (termed possible) pollutant linkages (contaminant–pathway–receptor) and is used as the basis for the design of the site investigation. The outline conceptual model is updated as further information becomes available, for example as a result of the site investigation.

Production of a conceptual model requires an assessment of risk to be made. Risk is a combination of the likelihood of an event occurring and the magnitude of its consequences. Therefore, both the likelihood and the consequences of an event must be taken into account when assessing risk. RSK has adopted guidance provided in CIRIA C552 for use in the production of conceptual models.

The likelihood of an event can be classified on a four-point system using the following terms and definitions based on CIRIA C552:

- highly likely: the event appears very likely in the short term and almost inevitable over the long term or there is evidence at the receptor of harm or pollution
- likely: it is probable that an event will occur or circumstances are such that the event is not inevitable, but possible in the short term and likely over the long term
- low likelihood: circumstances are possible under which an event could occur, but it is not certain even in the long term that an event would occur and it is less likely in the short term
- unlikely: circumstances are such that it is improbable the event would occur even in the long term.

The severity can be classified using a similar system also based on CIRIA C552. The terms and definitions relating to severity are:

- severe: short term (acute) risk to human health likely to result in 'significant harm' as defined by the Environment Protection Act 1990, Part IIA. Short-term risk of pollution of sensitive water resources. Catastrophic damage to buildings or property. Short-term risk to an ecosystem or organism forming part of that ecosystem (note definition of ecosystem in 'Draft Circular on Contaminated Land', DETR 2000)
- medium: chronic damage to human health ('significant harm' as defined in 'Draft Circular on Contaminated Land', DETR 2000), pollution of sensitive water resources, significant change in an ecosystem or organism forming part of that ecosystem
- mild: pollution of non-sensitive water resources. Significant damage to crops, buildings, structures and services ('significant harm' as defined in 'Draft Circular on Contaminated Land', DETR 2000). Damage to sensitive buildings, structures or the environment

• minor: harm, not necessarily significant, but that could result in financial loss or expenditure to resolve. Non-permanent human health effects easily prevented by use of personal protective clothing. Easily repairable damage to buildings, structures and services.

Once the probability of an event occurring and its consequences have been classified, a risk category can be assigned according to the table below.

		Consequences									
		Severe	Medium	Mild	Minor						
	Highly likely	Very high	High	Moderate	Moderate/low						
Probability	Likely	High	Moderate	Moderate/low	Low						
Prob	Low likelihood	Moderate	Moderate/low	Low	Very low						
	Unlikely	Moderate/low	Low	Very low	Very low						

Definitions of these risk categories are as follows together with an assessment of the further work that may be required:

- Very high: there is a high probability that severe harm could occur or there is evidence that severe harm is currently happening. This risk, if realised, could result in substantial liability; urgent investigation and remediation are likely to be required.
- High: harm is likely to occur. Realisation of the risk is likely to present a substantial liability. Urgent investigation is required. Remedial works may be necessary in the short term and are likely over the long term.
- Moderate: it is possible that harm could arise, but it is unlikely that the harm would be severe and it is more likely that the harm would be relatively mild. Investigation is normally required to clarify the risk and determine the liability. Some remedial works may be required in the longer term.
- Low: it is possible that harm could occur, but it is likely that if realised this harm would at worst normally be mild.
- Very low: there is a low possibility that harm could occur and if realised the harm is unlikely to be severe.

APPENDIX E EXPLORATORY HOLE RECORDS

TRIAL PIT LOG

Sample	1358 es an		End:		9.17 9.17	Ground Level: National Grid Co-ordinate: 121.28 E:475469.5 N:252463.3 Description of Strata Description of Strata Crop over silty slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse of quartzite, flint and limestone. (TOPSOIL) Firm orangish brown light grey silty slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is angular to rounded fine to coarse limestone, chalk, flint and quartzite. (GLACIAL TILL)	Sheet:	Depth (Thick ness) (0.30)	
Sample Depth 1 0.20 0.20 0.50 0.70 0.70 0.80 0.80 1.70 1.80 1.80 2.80	es an	d In-sit Type ES PID V D PID B PID B PID	u Tests Results 0.0ppm c _u =64/52/68 0.0ppm			Description of Strata Crop over silty slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse of quartzite, flint and limestone. (TOPSOIL) Firm orangish brown light grey silty slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is angular to rounded fine to coarse limestone, chalk, flint and quartzite.	-	Depth (Thick ness) (0.30) 0.30	Mat Gra Leg
Depth N 0.20 0.20 0.50 0.70 0.70 0.80 0.80 0.80 1.70 1.70 1.80 1.80 1.80 1.80		ES PID V D PID B PID	Results 0.0ppm c _u =64/52/68 0.0ppm	Water	Backfill	Crop over silty slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse of quartzite, flint and limestone. (TOPSOIL) Firm orangish brown light grey silty slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is angular to rounded fine to coarse limestone, chalk, flint and quartzite.	-	(Thick ness) (0.30) 0.30	Leg
0.20 0.20 0.50 0.70 0.70 0.80 0.80 0.80 1.70 1.80 1.80	No [·]	ES PID V D PID B PID	0.0ppm c _u =64/52/68 0.0ppm	M	Ba	Crop over silty slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse of quartzite, flint and limestone. (TOPSOIL) Firm orangish brown light grey silty slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is angular to rounded fine to coarse limestone, chalk, flint and quartzite.	-	ness) (0.30) 0.30	Leg
0.20 0.50 0.70 0.70 0.80 0.80 0.80 1.70 1.80 1.80 1.80 2.80		PID V PID B PID	c _u =64/52/68 0.0ppm			fine to coarse. Gravel is subangular to subrounded fine to coarse of quartzite, flint and limestone. (TOPSOIL) Firm orangish brown light grey silty slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is angular to rounded fine to coarse limestone, chalk, flint and quartzite.	- 120.98 - - - - - -	0.30	
0.70 0.70 0.80 0.80 1.70 1.70 1.80 1.80 2.80		D PID B PID	0.0ppm			rounded fine to coarse limestone, chalk, flint and quartzite.	-	- - - - - -	
0.70 0.80 0.80 1.70 1.70 1.80 1.80 1.80 2.80		PID B PID					-	- (1.10) -	
1.70 1.80 1.80 2.80		D				X	-	-	
		PID B PID	0.0ppm 0.0ppm			Firm stiff light grey and brown silty slighty sandy CLAY with rare to occasional fine rounded limestone gravel. (GLACIAL TILL)	- - - - - - - - -	- <u>1.40</u> 	
		D PID	0.0ppm			at 2.60m large limestone boulders. at 3.00m pocket of gravelly sand.	-	- - -(2.40) - - - -	
						at 3.20m becoming dark grey.	-	-	
3.40 - 3.40 		D PID	0.0ppm			Dark grey medium strong to strong LIMESTONE. (BLISWORTH LIMESTONE FORMATION) Trial pit terminated at 3.8m depth due to rockbed.	- - - - - - - - -	- - - - - - - - -	
Plan (Not to S	Scale)	2.50)	2. H 3. T 4. 0	Hard di Frial pi Ground	General Remarks in scanned with GPR prior to breaking ground. No services encou igging from 2.50m bgl. t remained stable during excavation. dwater not encountered. t backfilled with arisings upon completion.	untered.		
Method Used: N			Plant	L		All dimensions in metres Scale: Logged Checke By: RSalama By:	1:25	MB	A

TRIAL PIT LOG

		Road	le Bypass				Rox				TP
Contract R	ef: 313(502	Start:			Ground Level: 120.60		Grid Co-ordinate: 303.7 N:25235	Sheet:	_	- 6
[End:			120.00	E.4/3	303.7 N.25235		1	of 1 Mate
Depth	No	Type	tu Tests Results	Water	Backfill		scription of		Reduced Level	Depth (Thick ness)	Gra Leg
0.20		ES PID	0.0ppm			Crop over silty slightly fine to coarse. Gravel coarse of quartzite, flint (TOPSOIL) Firm orangish brown	is subangu and limesto light grey s	lar to subrounded finne.	ind is ne to 120.30 ightly	(0.30) 0.30	
0.50 0.50 0.70		D PID V	0.0ppm c _u =48/62/66			gravelly CĽAY. Sand i rounded fine to coarse (GLACIAL TILL)	s fine to coa	arse. Gravel is angu	lar to	-	
- - - 1.00 - 1.00 -		B PID	0.0ppm			at 1.00m occasiona	al angular lim	estone cobbles.		_(1.30) 	
1.50 1.50		D PID	0.0ppm			Firm to stiff light grey a rare to occasional fine i	nd brown sili ounded lime	ty slighty sandy CLAY stone gravel.	119.00 / with	1.60	
2.00		B PID	0.0ppm			(GLACIAL TILL)			-	-	
2.50 2.50		D PID	0.0ppm						-	-(2.00)	
- - - - 3.00 -		D PID	0.0ppm			at 3.00m dark grey			-	-	
3.50 3.50		D PID	0.0ppm			Strong dark grey and g \(BLISWORTH LIMEST Trial pit terminated at 3	ONE FORM	ATION)	 117.00 		
- - -										-	
Plan (Not to	o Scal	e)						Remarks		L	
0.70		2.7(0	2. 1 3. 0	Frial pit Ground	n scanned with GPR prio t remained stable during e lwater not encountered. t backfilled with arisings u	excavation.	-	encountered.		
						All dimensions in metre	5	Scale:	1:25		
Method			Plant				Logged	0	Checked	MB	

TRIAL PIT LOG

Contract:		Road	de Bypass			Client:	Roxh	ill		Trial Pi	t:	TF
Contract Re			Start:	11.0	9.17	Ground Level:	National G	rid Co-ordinate:		Sheet:		
	3135	583	End:	11.0	9.17	119.66	E:475	144.8 N:2522	57.5		1	of
Sam	oles a	nd In-si	tu Tests	Water	Backfill		scription of S	Strata		Reduced Level	Depth (Thick	Ma Gr
Depth	No	Туре	Results	Š	Ba		•		-	Red Le	ness)	Le
0.30 0.30 0.50 0.50 0.60 0.70 0.70		ES PID B PID > D PID	0.0ppm 0.0ppm c _u =98/110/102 0.0ppm			Turf over silty slightly fine to coarse. Gravel coarse quartzite, flint ar (POSSIBLE MADE GR Firm to stiff light grey sandy slightly gravelly (cobbles. Sand is fine subrounded fine to c Boulders are >250mr approximately 150mm a (GLACIAL TILL/POSSI	is subangula ad limestone. OUND) and dark gr CLAY with rar to coarse. oarse quartz n and are and are subar	er to subrounded eyish brown silty re limestone boulde Gravel is subang cite, flint and lime rounded. Cobble ngular to subrounded	fine to slightly ers and jular to estone. es are	119.46	0.20 - - - - -	
1.00 1.00		B PID	0.0ppm						-	-	- - - (2.00) - - -	
1.70 1.70 1.80		D PID V	0.0ppm c _u =112/102/108						-	- 117.46	- - - - - 2.20	
2.50 2.60 2.60		V D PID	c _u =60/72/56 0.0ppm			Firm brown, light grey a slightly gravelly CLAY subangular to subround and flint with occasio Cobbles are 150mm subangular. Boulders a (GLACIAL TILL/POSSI	. Sand is di ded fine to co nal limestone to 250mm are >300mm a	ne to coarse. Gr parse limestone, que cobbles and bo and are subroun and are rounded.	avel is uartzite oulders.	· · ·	- - - - - - - - (1.80)	
3.50 3.50		D PID	0.0ppm						-	· · ·	-	
4.00 4.00		D PID	0.0ppm			Trial pit terminated at 4	00m depth.			115.66	<u>4.00</u>	
Plan (Not to		e) 2.5	0	2. T 3. C	rial pit Ground	n scanned with GPR prio remained stable during e water not encountered.	to breaking excavation.	-	es encoui	ntered.		
Method Used:	, <u> </u>	hine c	Plant Used		·	All dimensions in metre		Scale: RSalama	Checked By:	1:25	MB	

TRIAL PIT LOG

Dept 0.50 0.50 0.70	3 Samp			le Bypas Star					Client: Roxhill			1		TΡ
Dept 0.50 0.50 0.70	Samp	135			τ: 11	.09	.17	Ground Level:		Grid Co-ordinate:		Sheet:		
Dept 0.50 0.50 0.70						.09	.17	121.42	E:475	070.3 N:2522	24.4		1	of
0.50 0.50 0.70	th	les a	nd In-sit	u Tests	tor t	D	kfill	2		0		le/	Depth	Mate
0.50 0.70		No	Туре	Results	Water	~~~	Backfill	De	scription of	Strata		Reduced Level	(Thick ness)	Gra Leg
0.70			ES PID D PID	0.0ppm 0.0ppm				Firm light grey and da slightly gravelly CLAY cobbles. Sand is fine subrounded fine to coar (GLACIAL TILL/POSSI	with rare to coarse. se quartzite	limestone boulde Gravel is subang flint and limestone	ers and gular to	-	-	
1.00 1.00			B PID	0.0ppm		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX						-	- -(2.00) - - - -	
1.70 1.70			D PID	0.0ppm								- - - 119.42	- - - 2.00	
2.00 2.00			B PID	0.0ppm				Soft brown, light grey a slightly gravelly CLAY subangular to subround and flint with occasiona (GLACIAL TILL)	. Sand is t ded fine to c	fine to coarse. Gi coarse limestone, q	ravel is juartzite	-	-	
2.50 2.50			D PID	0.0ppm								-	(1.10) - - -	
								Firm dark brown silty Sand is fine to coarse quartzite and limestone (GLACIAL TILL)	. Gravel is	dy slightly gravelly subangular fine to	CLAY. coarse	<u>118.32</u> - -	-	
						XXXXXXXXXXXXXXXXXX						- - - - 117.42	(0.90) - - 4.00	
-						×	~~**	Trial pit terminated at 4	00m depth.				-	
Plan (N	lot to	Scale	e)					(Genera	Remarks				
	0.70		2.50)	2	. Tr . Gr	ial pit ound	n scanned with GPR prio remained stable during e water not encountered. backfilled with arisings u	excavation.	-	es encou	ntered.		
					-			All dimensions in metre	8	Scale:		1:25		
Method				Pla	ant				Logged		Checke		MB	F

		Road	de Bypass				Rox	hill			TF
Contract R			Start:			Ground Level:		Grid Co-ordinate:	Shee		
	3135			11.0	1	120.61	E:474	984.3 N:252			of
			tu Tests	Water	Backfill		escription of	Strata	Reduced Level	Depth (Thick	Gr
Depth	No	Туре	Results	5		Crop over silty slight	v sandy sligh			ness)	Le
- 0.20 - 0.20 -		ES PID	0.0ppm			fine to coarse. Grav coarse of quartzite, fli (TOPSOIL) Firm orangish browr gravelly CLAY. Sand	el is subangunt and limesto light grey s is fine to co	lar to subrounded ne. ilty slightly sandy arse. Gravel is ar	fine to 120.3	(0.30) 1 0.30	
0.50 0.50 - 0.50 -		D V PID	c _u =38/46/50 0.0ppm			rounded fine to coars (GLACIAL TILL)	e limestone, fli	nt and quartzite.		-	
1.00 1.00		B PID	0.0ppm							-	
1.50 1.50 - -		D PID	0.0ppm						- - -	(2.90)	
2.00		B PID	0.0ppm						-	-	o''
2.50 2.50 -		D PID	0.0ppm							-	
- 3.00 - 3.00 -		D PID	0.0ppm			Very strong grey LIME (BLISWORTH LIMES	ESTONE. TONE FORM	ATION)	117.4	1 3.20	
-						Trial pit terminated at	3.20m depth.				
Plan (Not t	o Scal	e)						Remarks			
0.70		2.50	0	2. T 3. C	Frial pi Ground	on scanned with GPR pr t remained stable during Jwater not encountered. t backfilled with arisings	excavation.	-	ces encounterec		
						All dimensions in meti	es	Scale:	1:25		
Method			Plant	1					Checked		

TRIAL PIT LOG

a		Road	le Bypass				Rox					TP
Contract R	tef: 313	502	Start:			Ground Level: 119.86		Brid Co-ordinate: 875.3 N:2519		Sheet:	4	- 6
0					9.17	113.00	E.4/4	0/5.3 11.2313		ð	1	of
Depth	No	Type	tu Tests Results	Water	Backfill	De	scription of	Strata		Reduced Level	Depth (Thick	Gra
0.10		ES	INESUIIS			Brown silty slightly san to coarse. Gravel is su	dy slightly gr bangular to s	avelly CLAY. San	d is fine	<u>8</u> – 19.66	ness) 0.20	Leg
0.10		PID	0.0ppm			∖quartzite and flint. Firm brown and light gr sandy slightly gravelly (subangular to subround	CLAY. Sand	is fine to coarse. G	slightly	19.00	-	
0.50 0.50		D PID	0.0ppm			(GLAČIAL TILL)			-		-	
0.80		V	c _u =48/56/52						-		-	
-									F		-	
-						at 1.40m large lime	stone boulde	er.	-		-	
1.50 1.50		D PID	0.0ppm						-		-	
						at 1.80m grey in co	lour.		-		- - -(3.60)	
-									-		-(00.cu) - -	
						at 2.30m dark grey			-		-	
2.50 2.50		D PID	0.0ppm						-		-	
									-		-	
-									-		-	
									-		-	
3.50 3.50		D PID	0.0ppm						-		-	
						Trial pit terminated at 3.	80m depth d	lue to machine liftir	1 ng.	16.06	3.80	<u> </u>
- 											_	
									-		-	
-											-	
Plan (Not t	to Scal	e)						Remarks				
0.70		2.5	0	2. H 3. T 4. (Hard di Frial pit Grounc	n scanned with GPR prior gging from 3.40m bgl. remained stable during e water not encountered. backfilled with arisings u	excavation.	-	es encoun	tered.		
N. C. 1						All dimensions in metre		Scale:		:25	-	
Method Used:	Ma	chine d	Plant Usec			JCB-3CX	Logged By:	RSalama	Checked By:	T	MВ	A

Samp Depth 0.20 0.20	ef: 313583 ples and In-si No Type ES PID	U Tests Results		9.17 9.17 Backtill	Ground Level: 115.32		id Co-ordinate: '83.5 N:251216	Sheet:		of
Samp Depth 0.20 0.20	ples and In-si	tu Tests Results	1		115.32	E:4747	'83.5 N:251216	.1	1	of
Depth 0.20 0.20	No Type ES	Results	Water	ackfill					•	51
0.20 0.20	ES			m	Desc	cription of S	trata	Reduced Level	Depth (Thick ness)	Mate Grap Lege
					Brown silty slightly sandy to coarse. Gravel is suba flint, quartzite and chalk. (TOPSOIL) Firm to stiff orangish brow CLAY. Sand is fine to subrounded fine to coars (GLACIOFLUVIAL DEPC	own silty sligh own silty sligh o coarse. C se quartzite, l	ubrounded fine to co tly sandy slightly grav Gravel is subangula	fine arse 115.02 velly	(0.30)	
0.90 -0.90 1.00 1.00 1.10 1.10	D PID B PID D PID	0.0ppm 0.0ppm 0.0ppm			Orangish brown slightly SAND. SAnd is fine to subrounded fine to coars (GLACIOFLUVIAL DEPC Orangish brown sandy Gravel is subangular to and flint.	to coarse. (se of quartzite OSITS) GRAVEL. 3	Gravel is subangula e and flint. Sand is fine to coa	r to - 114.02	(0.30)	
2.00	D PID	0.0ppm			(GLACIOFLUVIAL DEPC	OSITS)			- - - - - - - (2.00)	• • • • • • • • • • • • • • • • • • •
- - - - - - 3.00 - - - -	B PID	0.0ppm			at 3.20m large limes Trial pit terminated at 3.3				- - - - - - - - - - - - - - - - - - -	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
- - - - -									- - - - -	
Plan (Not to	Scale)				G	General	Remarks	_	-	
0.70	2.5	0>	2. 3. (Frial pi Ground	n scanned with GPR prior t t remained stable during ex lwater not encountered. t backfilled with arisings upo	cavation.		encountered.		
					All dimensions in metres		Scale:	1:25		
Method		Plan	nt i			Logged		l	MB	

Contract:		Road	e Bypass			Client:	Roxh	ill	Trial F	11:	TP1
Contract Re	ef:				9.17	Ground Level:	National G	rid Co-ordinate:	Sheet	:	
:	313	583	End:	08.0	9.17	115.93	E:4748	841.1 N:2511	41.4	1	of '
Sam	ples a	nd In-sit	u Tests	er	J.				ced	Depth	Mate
Depth	No	Туре	Results	Water	Backfill	D	escription of S	Strata	Reduced Level	(Thick ness)	Grap Lege
						Brown silty slightly sa to coarse. Gravel is s flint and quartzite. (TOPSOIL) Firm to stiff orangish b CLAY. Sand is fine	ubangular to s prown silty sligh to coarse. (ubrounded fine to ntly sandy slightly g Gravel is subang	d is fine coarse gravelly ular to	0.20	
0.70 0.70 0.80 0.80		D PID B PID	0.0ppm 0.0ppm			subrounded fine to coa (GLACIAL TILL)	arse quanzite,	limestone and cha	IK - - - - - -	- - - -(1.60) - -	
1.90		В				between 1.40m ar Very soft orangish bro (GLACIAL TILL)			114.13	- - - - - - -	
-1.90		PID	0.0ppm			Firm brown silty sligl	ntly sandy sliv	abily gravelly CL	- - - - - - - - - - - - - - - - - - -	(0.70) 2.50	
2.80 2.80 -2.90 2.90		b Pid D Pid	0.0ppm 0.0ppm			in blown sity sign occasional limestone l is subangular to sub limestone. Boulders ar (GLACIAL TILL)	boulders. Sand rounded fine	t is fine to coarse. to coarse ironsto	Gravel	- - - (0.90) -	
0.40									112.53	3.40	
3.40 3.40		D PID	0.0ppm			Extremely weak light g (BLISWORTH LIMES	TONE FORMA	TION)	- - - 1111.93	- - (0.60) - - - - 4.00	
-					~~~~~	Trial pit terminated at 4	4.00m depth.			- - - -	
Plan (Not to	o Scal	e)				1		Remarks	L	L	
0.70		2.70		2. H 3. T 4. (Hard di Frial pit Grounc	n scanned with GPR pric gging from 3.40m bgl. remained stable during water not encountered. backfilled with arisings	excavation.	-	es encountered.		
						All dimensions in metro	es	Scale:	1:25		
			Plan				Logged	1	Checked •		

	313	583	Start:	07 0								
Sam						Ground Level:		Grid Co-ordinate:		Sheet:	4	
	iples a		End:	1		114.78	C :4/4	922.9 N:25104	14.0	g	1	of
Depth		and In-sit		Water	Backfill	De	escription of	Strata		Reduced Level	Depth (Thick	Gra
	No	Туре	Results	5		Brown silty slightly san	dy clightly a	ravelly CLAX Sand	is fino	Re	ness)	Le
0.20 0.20 0.50 0.50 0.60		ES PID B PID D PID	0.0ppm 0.0ppm			to coarse. Gravel is su of quartzite and flint w cobbles. Cobbles are 6 (TOPSOIL) Frim orangish brown si Sand is fine to coarse fine to coarse of quartz (GLACIAL TILL)	bangular to rith occasion x4x6cm. Ity slightly sa Gravel is ite with occa	subrounded fine to o al quartzite and lime andy slightly gravelly subangular to subro sional limestone cob	coarse estone CLAY. unded bles.	- <u>114.48</u> - - -	(0.30) 0.30	
0.60 		B PID D PID	0.0ppm 0.0ppm 0.0ppm			at 0.30m frequ 30x20x20cm.	ent limeston	e boulders. Boulde	rs are .	-	- - - - - - - - - - - - - - - - - - -	
2.50 2.50 2.60 2.60		B PID D PID	0.0ppm 0.0ppm			Very stiff dark greyis gravelly CLAY. Sand is rounded fine to coarse (WEATHERED BLISW Medium strong to stro recovered as cobbles a (BLISWORTH LIMEST	of limestone ORTH LIME ong dark gr ind gravel.	and mudstone lithore STONE FORMATIO eyish brown LIMES	slightly ular to elicts. N)	- - - - - - - - - - - - - - - - - - -	(0.30)	
3.50 3.50 3.60 3.60		B PID D PID	0.0ppm 0.0ppm			Trial pit terminated at 3	.60m depth.			- 	- 3.60	
- - -		U .	о.оррп							- - - -	- - - - -	
Plan (Not to	o Scal	e) — 2.50	·	2.	Frial pi Ground	n scanned with GPR prio t remained stable during e water not encountered. t backfilled with arisings u	r to breaking excavation.		s encou	ntered.		
Method	♥ [Plan	t		All dimensions in metre	s Logged	Scale:	Checked	1:25	MB	A

Contract:		Road	le Bypass				Client:	Roxh			Trial Pi	ι.	TP1
Contract R	ef:		Start:	07.0	9.17	Ground	d Level:	National G	rid Co-ordinate:		Sheet:		
	3135	583	End:	07.0	9.17		110.97	E:4750	025.6 N:2509	20.1		1	of 1
Sam	nples a	nd In-si	tu Tests	Water	kfill			a aniatiana af C	Nu - 4 -		vel	Depth	Mater Graph
Depth	No	Туре	Results	Wa	Backfill		De	scription of S	Strata		Reduced Level	(Thick ness)	Lege
0.20 0.20	1	ES PID	0.0ppm			to co of qu limes (TOP	arse. Gravel is su uartzite and flint tone cobbles. Cob PSOIL)	bangular to s with occasion bles are 6x4x		coarse int and	110.67	(0.30) 0.30	
0.50		v	c _u =42/50/58			Sand fine to	is fine to coarse o coarse of quartz	Gravel is site with occas	dy slightly gravelly ubangular to subr ional limestone co	ounded bbles.	-	-	
0.70 0.70	4	D PID	0.0ppm			(WE#	ATHERED BLISW	ORTHLIMES	STONE FORMATIO	JN)	-	(0.90) -	
1.00 1.00	3	B PID	0.0ppm			Firm	to stiff yellowish	brown and	grey silty slighty	sandy	109.77	- 1.20	
1.50 1.50 1.50	5 7	D ES PID	0.0ppm			slight (WEA	ly gravellý CLAY v ATHERED BLISW	vith frequent li ORTH LIMES	imestone cobbles. STONE FORMATI	ON)		-	
2.00	6	В	оторын								-	[(1.10) - -	
2.00	Ū	PID	0.0ppm								108.67	2.30	× ·× × ·× × ·×
2.40 2.40 2.50		D PID B	0.0ppm			LIME	mely weak yellow STONE. SWORTH LIMEST	-	ghtly clayey slightl <u>y</u> TION)	y sanoy	-	-	
											-	 (1.70) 	
												-	
						Trial	pit terminated at 4	.00m depth.			106.97	4.00	╞┷┯┙
											-	-	
Plan (Not to	o Scale	e)						General	Remarks				
0.70		2.50	0	2. F 3. T 4. C	lard d Trial pi Ground	igging fi t remair dwater r	ned with GPR prio rom 1.50m bgl. ned stable during e not encountered. lled with arisings u	excavation.	ground. No servic on.	es encou	untered.		
			I			All dir	mensions in metre		Scale:		1:25	_	
Method Jsed:		hine d	Plant Usec				-3CX	Logged By:	RSalama	Checke By:	ed]	MB	AC

		Road	e Bypass				Rox				TP
Contract R		.00	Start:			Ground Level:		Grid Co-ordinate:	Sheet:		
	3135			07.0		104.51	E:4/5	082.9 N:2508		1	of
	-	nd In-sit		Water	Backfill	C	escription of	Strata	Reduced Level	Depth (Thick	Gra
Depth	No	Туре	Results	>		Brown silty slightly sa	ndv slightly g	ravelly CLAY San	d is fine	ness)	Leg
0.10		ES PID	0.0ppm			to coarse. Gravel is s of quartzite, flint, chall (TOPSOIL)	ubangular to and limeston	subrounded fine to e.	o coarse [(0.30) 0.30	1/ · <u>· · ·</u>
0.60		В				Light brown creamy frequent limestone c limestone. Gravel is s of limestone.	obbles. Cobbl subangular to	es are 7x6x6cm a subrounded fine to	and are coarse	(0.40) 0.70	
0.60		PID	0.0ppm			(WEATHERED BLIS) Very stiff dark grey m desicated CLAY. (RUTLAND FORMAT	ottled orangisl			-	
-									-	-	
									-	[(1.10) [-	
1.60 1.60		B PID	0.0ppm								
1.70 1.70		D PID	0.0ppm			from 1.80m becon Trial pit terminated at	ning light bluis	sh grey.	102.71	1.80	×·
· · · · · · ·										-	
Plan (Not to	o Scale	e)					General	Remarks			
0.70		2.50		2. H 3. T 4. C	lard d Trial pi Ground	on scanned with GPR pri igging from 0.70m bgl. t remained stable during water not encountered. t backfilled with arisings	or to breaking excavation.	ground. No servic	ces encountered.		
						All dimensions in metr	es	Scale:	1:25		

Contract:		Road	e Bypass			Client:	Roxh		Trial F		'P1(
Contract R			Start:	08.0	9.17	Ground Level:		rid Co-ordinate:	Sheet	:	
	313	583	End:	08.0	9.17	104.51	E:475	082.9 N:25080		1	of
Sam	ples a	and In-sit	u Tests	Water	Backfill		poorintian of C	Strata	Reduced Level	Depth (Thick	Mat Gra
Depth	No	Туре	Results	Nê.	Bac		escription of S		Redi	ness)	Leg
						MADE GROUND: Gra (MADE GROUND/RAI			-		
0.20 0.20		ES PID	0.0ppm							(0.40)	
0.20			0.000			Orangish brown silty s	ightly sandv sl	lightly gravelly CLAY	104.1 ² 7. 104.0 ²		×o,
0.50 0.50		ES PID	0.0ppm			(GLACIAL TILL) Trial pit terminated at (J . , J , J , J , J , J , J , J , J , J , J , J .	/	- 0.30	<u> </u>
							F -			-	
-										-	
										-	
									-	-	
-									-	-	
									-	-	
									-	-	
									-	-	
-									-	-	
									-	-	
									-	-	
									ŀ	ŀ	
									-	\vdash	
									Ļ	ŀ	
									ŀ	ŀ	
									-		
Plan (Not to	o Scal	e)					General	Remarks			
0.70	 2.50 → 0.1 					on scanned with GPR prio t remained stable during dwater not encountered. t backfilled with arisings o	excavation.	-	s encountered		
				1							
						All dimensions in metre	es	Scale:	1:25		

Contract:		Road	de Bypass			Client:	Rox	nill		Trial Pi	it:	ΤР
Contract R	ef:		Start:	07.0	9.17	Ground Level:	National G	irid Co-ordinate:		Sheet:		
	313	583	End:	07.0	9.17	102.16	E:475	121.9 N:2507	10.3		1	of
Sam	ples a	and In-si	tu Tests	Water	Backfill		scription of S	Strata		Reduced Level	Depth (Thick	Mat Gra
Depth	No	Туре	Results	Š	Ba					Red	ness)	Leg
0.20 0.20		ES PID	0.0ppm			Brown silty slightly san to coarse. Gravel is su of quartzite, flint, chalk a (TOPSOIL)	bangular to s and limeston	subrounded fine to e.	coarse	- 101.86	- 0.30 -	
0.50 0.50 0.60 0.60		B PID D PID	0.0ppm 0.0ppm			Light brown creamy si frequent limestone cot limestone. Gravel is su of limestone.	bles. Cobbl	es are 7x6x6cm a	and are	-	(0.70)	
_0.70		V	c _u =48/54/56			(WEATHERED BLISW) Very stiff grey mottled Sand is fine to coarse.			<u> </u>	<u>101.16</u>	1.00 	
1.30		V	c _u =98/110/86			(WEATHERED BLISW	ORTH LIME	STONE FORMATI	ON)	-	- -	
1.50 1.50 1.60		B PID D	0.0ppm			at 1.70m white	subangular	to angular fine to	coarse	-	- -	
1.60		PID	0.0ppm			limestone gravels.				-	-	
										F - -	- -	
2.50 2.50 2.60		B PID D	0.0ppm							- - -	(3.20)	
2.60		PID	0.0ppm			at 2.90m becoming	light grey.			-	-	
										-	-	
3.50 3.50		B PID	0.0ppm							-	-	
3.60 3.60		D PID	0.0ppm			at 3.70m becoming	grey in colo	ur.		-	-	
4.40 4.40		D PID	0.0ppm			Soft dark bluish grey sandy CLAY with free coarse mudstone lithore	quent subar elicts.	ngish brown silty Igular to angular	slightly fine to	97.96 97.66	4.20 4.50	
4.50		В				Trial pit terminated at 4]	-	-	
-										-	-	
										- - -	-	
-										-	-	
										-	-	
Plan (Not te	o Scal	e)				(General	Remarks				
0.70		— 2.6	0	2. H 3. T 4. (Hard d Frial pi Ground	n scanned with GPR prior igging from 2.00m bgl. t remained stable during e water not encountered. t backfilled with arisings u	excavation.	-	es encol	untered.		
			J			All dimensions in metre		Scale:		1:35		1 88
Method		chine c	Plant Usec			JCB-3CX	Logged By:	RSalama	Checke By:	ed 🕇	MB	A

Contract:		Roa	de Bypass			Client:	Rox	hill		Trial Pi	t:	ТР
Contract R	ef:	Noa	Start:	08.0	9 17	Ground Level:	-	irid Co-ordinate:		Sheet:		
		583		08.0		117.37		880.5 N:2517	86.9		1	of
			itu Tests	1	1					e –	Depth	
Depth	No		Results	Water	Backfill	Des	scription of S	Strata		Reduced Level	(Thick ness)	Gra
0.20 0.20		ES PID	0.0ppm			Brown silty slightly sand to coarse. Gravel is sul quartzite and flint. (TOPSOIL) Firm brown and light gra sandy slightly gravelly C	ey mottled o	subrounded fine to	coarse slightly	117.17	0.20	
0.60 0.70 0.70 0.80 0.80		V B PID D PID	c _u =56/68/62 0.0ppm 0.0ppm			subangular to subround (GLACIAL TILL)	ed fine to co	arse limestone.		- - - -	-	
1.70 1.70		D PID	0.0ppm			between 1.30m limestone. Cobbles are to subrounded. Boulde subrounded.	100mm to 2	50mm and are sub	angular	-	- (1.80) - - - - -	
2.00 2.10 2.10		V PID	c _u =74/68/83			Firm grey silty CLAY. (GLACIAL TILL)					2.00	
2.70		V	c _u =114/126/120			at 2.50m stiff.			-	- - -	- - - - -	
3.20 3.20		D PID	0.0ppm			Very stiff grey mottled CLAY. (GLACIAL TILL) at 3.30m greyish gr	-	prown silty slightly	sandy	114.27	<u>3.10</u> - (0.40)	
						Strong greyish green LII (BLISWORTH LIMEST(Trial pit terminated at 3.	ONE FORM/	ATION)		<u>113.87</u>	<u>3.50</u> - - -	
										- - -	-	
Plan (Not te	o Sca	le)				(General	Remarks				_
0.70	▲ ↓ _	2.5	50 -	2. T 3. C	Frial pit Ground	n scanned with GPR prior remained stable during e lwater not encountered. backfilled with arisings up	xcavation.	-	es encou	ntered.		
				-		All dimensions in metres	2	Scale:		1:25		
Method			Plant	<u> </u> t			Logged		Checke		MB	
		chine d				JCB-3CX	By:		By:			A

TRIAL PIT LOG

Contract Re	ef:	Ruau	e Bypass Start:		9.17	Ground Level:	Roxh	Grid Co-ordinate:	Sheet:		TP
	3135	583			9.17	119.11		839.3 N:251894			of
Sam	ples a	nd In-sit	u Tests	er	- III		-		ced	Depth	Mat
Depth	No	Туре	Results	Water	Backfill	De	scription of S	Strata	Reduced Level	(Thick ness)	Gra Leg
0.50		D PID	0.0ppm			Brown silty slightly san to coarse. Gravel is su quartzite and flint. Firm brown and light gr sandy slightly gravelly (subangular to subround (GLACIAL TILL)	ey mottled o	subrounded fine to co rangish brown silty sli is fine to coarse. Grav	s fine parse 118.91 ghtly -	0.20	
1.50 1.50		D PID	0.0ppm			at 2.00m becoming	dark grey.			-(3.60)	
2.50 2.50		D PID	0.0ppm							-	
3.50 3.50		D PID	0.0ppm			Trial pit terminated at 3	80m depth.		- - - - 115.31	- - - - - - - - - - - - - - - - - - -	
-									-	- - - - -	
Plan (Not to	Scal	e)				(General	Remarks			
0.70		2.50		2. 1	Frial pit Ground	canned with GPr prior to b remained stable during e lwater not encountered. backfilled with arisings.	reaking grou excavation.	ind. No services detec	sted.		
						All dimensions in metre	s	Scale:	1:25		
			Plant	1			Logged		hecked T		

Contract:		Road	e Bypass			Client:	Roxh	ill	Ina	ll Pit:	TP22
Contract Re	ef:				9.17	Ground Level:	National G	rid Co-ordinate:	She	et:	
	313	583	End:	13.0	9.17	117.11	E:475	190.4 N:2522		1	of 1
Sam	ples a	nd In-sit	u Tests	ter	kfill				lced	Depth	Mate
Depth	No	Туре	Results	Water	Backfill	De	escription of S	strata	Reduced	a) (Thick ness) ا	
-						Grass over brown silty Sand is fine to coarse. subrounded chalk, qua (TOPSOIL) Firm to stiff light grey b CLAY with frequent an coarse. Gravel is sub- limestone, flint and qua (GLACIAL TILL/POSSI	Gravel is fine rtzite, flint and rown silty slig gular limeston angular to su rtzite.	to coarse, subang l limestone. htly sandy slightly g le cobbles. Sand is brounded, fine to	gular to [116 gravelly _ fine to	(0.30) .81 0.30	1
1.00 - 1.00 - - - - - -	1	B PID	0.0ppm							[(2.70]	
2.00 2.00	2	B PID	0.0ppm							-	
- 3.00 - 3.00 - - - - - - - - - - - - - - - - - -	3	B PID	0.0ppm						114 - - - - - - - - - - - - - - - - - -	.11 3.00	
				<u> </u>							
Plan (Not to	o Scal	e)					General	Remarks			
0.70		2.50		2. 3. 4. (5.	Hard d Frial pi Ground Frial pi	anned with GPR prior to gging from 1.50m bgl. remained stable during e water not encountered. backfilled with arisings. used for soakaway test.		und. No services de	etected.		
				<u> </u>							
						All dimensions in metre	S	Scale:	1:2	5	

		Road	e Bypass				Roxh				TP2
Contract Re	ef: 313(:02				Ground Level: 121.20		rid Co-ordinate:)53.4 N:25223	She		. 1
			End:		1	121.20	E.4/3	J55.4 N.25225		1	
Depth	No	nd In-situ Type	Results	Water	Backfill	De	scription of S	Strata	Reduced	Dep (Thi nes	ck Grapi
-						Grass over brown silty Sand is fine to coarse. subrounded chalk, quar	Gravel is fine	e to coarse, subang	CLAY.	(0.3	0) <u>12 · 31 · 12</u> 0) <u>12 · 31 · 12</u>
1.00	1	B PID	0.0ppm			Firm brown light grey slightly gravelly CLAY fine to coarse. Gravel coarse limestone quartz (GLACIAL TILL/POSSIE Brown in colour from	with rare lim is subangula ite and flint. BLE MADE G	estone cobbles. Sa ar to subrounded f	sandy and is	<u>.90 0.3</u> - - - - - - - - - - - - - - - - - - -	
2.00 		PID	0.0ppm						- - - - - - - - - - - - 118	.20 3.0	0
- 3.00 - 3.00 	3	B PID	0.0ppm								
					-		Conorol	Domorko			
Plan (Not to 2 0		e) 2.50		2. 3. (4.	Trial pi Grouno Trial pi	canned with GPR prior to I t remained stable during e dwater not encountered. t backfilled arisings upon o t used for soakaway test.	preaking grou xcavation.	Remarks	ected.		
						All dimensions in metres	3	Scale:	1:2	5	

		Road	e Bypass				Roxh	ill			TP2
Contract R		-00				Ground Level:		id Co-ordinate:	Sheet:		
	313		End:		9.17	99.88	E:4/5	145.4 N:250780			of 1
Sam Depth	No	nd In-situ Type	u Tests Results	Water	Backfill	De	scription of S	trata	Reduced Level	Depth (Thick ness)	Mater Grapt Lege
-						Grass over brown silty Sand is fine to coarse fine to coarse quartzite,	. Gravel is s	ubangular to subroun	AY.	(0.30) 0.30	<u>17. 31.</u> 17. <u>31.</u> 17. <u>11.</u>
- - - -						Firm brown orange silty Sand is fine to coarse fine to coarse quartzite (GLACIAL TILL)	/ slightly sand . Gravel is so flint and limes	dy slightly gravelly CL ubangular to subround stone.	99.58 AY. ded - - -	<u>0.30</u> - - -	
- 	1	B PID	0.0ppm						-	-	
- - - - 2.00	2	в				light grey in colour ∶	from 1.50m		-	(2.70) - - -	
2.00		PID	0.0ppm			with angular limest	one cobbles fi	rom 2.50m	- - - -	-	
-						Soil becoming dam	p from 2.80m			-	
3.00 3.00 -	2	B PID	0.0ppm		~~~~~	×			<u>96.88</u> - - - -	<u>3.00</u> - - -	<u> </u>
-									-	-	
 - -									-	- - -	
Plan (Not to	o Scal	e)				(General	Remarks			
0.70	▲ ↓	2.50	>	2. 3. 0 4.	Frial pi Ground Frial pi	canned with GPR prior to t remained stable during e dwater not encountered. t backfilled with arisings u t used for soakaway test.	excavation.		sted.		
				-		All dimensions in metre	S	Scale:	1:25		
Method			Plant				Logged		necked	MB	A

Contract:	Roade	e Byr	pass			Client:		Roxhill		Windo	w Samp	ole: WS01
Contract Ref	:		Start:	06.09.17 G	roun	d Level:		National Grid	Co-ordinate:	Sheet:		
3	13583		End:	06.09.17		120.	71	E:47548	8.6 N:252412.	5	1	of 1
Progress		Samp	oles / T	ests	er -	L- & tion				el ced	Depth	Materi
Window Ru	n Depth	No	Туре	Results	Water	Backfill & Instru- mentation		Description		Reduced Level	(Thick ness)	Graph Legen
	- 0.20 - 0.20 - 0.40	1 2	ES PID B	0.0ppm			gravelly C Gravel is of quartzit ∖(TOPSOII Firm ora gravelly C	LAY with freque angular to subr e. .) ngish brown s LAY. Gravel is urse of chalk, qu	slightly sandy sligh ent roots and rootle ounded fine to coar slightly sandy sligh angular to subround artzite and flint.	ets. [rse 120.41	- (0.30) - 0.30 - - -	
1.20 - 2.00 (85mm dia) 100% rec	- - - - - - - - - - - - - - - - - - -	3 1 4	D SPT(c) D	N=27			Beco	ning stiff from 1.	.20m bgl.		- - - - - (2.20) - -	
2.00 - 2.50 (75mm dia) 100% rec	- - - - - - - - - - - - - - -	2	SPT(c)	N=50			becor	ning very stiff fro	om 2.00m.	- - - - 118.21	- - - - 2.50	
- -		3	SPT(c)	N:50 for 285mm			Window s on refusal		ninated at 2.50m de			
	ing Progress a Boreho Deptr (m)	ile C n E	ater Ot asing Depth (m)	Borehole W Diameter D	ater epth m)	2. Ha 3. Gi	ncountered. and dug ins roundwater	nned with GPR p pection pit to 1.2 not encontered.		und. No Sei	vices	
								sions in metres	Scale:	1:25		
Method T	acked wind	low	Plan Use				Drilled By:		Logged	Checko	edmu	3 AG

Contract:	Roade	• Bv	nass			Client:		Roxhill		vvindov	v Samp	WS02
Contract Ref:	Roude	<i>,</i> Dy	-	06.09.17	Grour	nd Level	:	National Grid Co-	ordinate:	Sheet:		
313	3583			06.09.17		119		E:474865.0) N:251894.1		1	of 2
Progress		Sam	ples / T							el de	Depth	Materi
Window Run	Depth	No	Туре	Results	Water	Backfill & Instru- mentation		Description of S	Strata	Reduced Level	(Thick ness)	Graph Leger
	- 0.20 - 0.20	1	ES PID	0.0ppm			with free	r brown sandy slig Juent roots and r o subrounded fine zite. L)	ootlets. Gravel is	118.95	(0.40) 0.40	
	0.50	2	D				slightly g	coming stiff orang ravelly CLAY. Gra ed fine to coars	ivel is angular to	-	-	
	0.70	4	В				quartzite. (GLACIA			-	-	
	1.00	3	D								 _(1.40)	
	1.20-1.65	1	SPT(c)	N=17						-	-	
1.20 - 2.00 (85mm dia)	1.40	5	D							-	-	
100% rec	- - - 2.00-2.45 -	2	SPT(c)	N=22			slightly s angular t quartzite (GLACIA	vish brown mottled andy slightly gravell o subrounded fine f and flint. _ TILL) 30m cobbles of sand	y CLAY. Gravel is to coarse of chalk,	- - - - - -	- - - - -	
2.00 - 3.00 (75mm dia) 100% rec	2.40	6	D							-	- (1.30) - - -	
	- 3.00-3.45 -	3	SPT(c)	N=46			Stiff dar	00m becoming very s	v gravellv CLAY.	- 	- 	
3.00 - 4.00 (65mm dia) 100% rec	- - - - - -	7	D				Gravel is	angular to subroun nd sandstone.	ded fine to coarse	-	-	
4.00 - 5.00 (65mm dia)	- - - - - - -	4	SPT(c)	N=40						-	- - - - [(2.35)	0 × × × × × × ×
100% rec	4.40	8	D							-	-	Ĕ <u></u>

SINT SINT	Used:		samp		VV	Used		emier 11	10	By:	DSUK LTD	Logge By:	MSouthworth	By:		AGS
LIBR	Method	Tre		vindo		Plan	 +		A	Drilled	sions in metres	10000	Scale:	1:25	od –	
Vary_V8_06.GLB LibVersion: unment Ltd, Abbey Park, Humb				<u>(</u> m)		(<u>m</u>)	(mm)	(ṁ)	enco 2. Hanc 3. Grou 4. Gas	untered. d dug ins ndwater and grou	ned with GPR p pection pit to 1.2 not encontered. ndwater monitor	20m bgl	, Il installed to 5.0	0m bgl.	rvices	
v8_06_018 er Road, C	Date	Drilling Tim	B	ess and orehole Depth	C	ater Ob asing Depth	Borehole Diameter	Water Depth	-		Gene	eral	Remarks			
8 Prj\ Coven	L													-L	L	
/ersion: v8_06 - Core+Logs ntry, CV3 4AQ. Tel: 02476 5	- 4.00 - 5. (65mm c 100% r	dia)	4.00-4. 4.40	.45	4	SPT(c) D	N=40							- - - -	(2.35)	
GINT_LIBRARY_V8_06.GLB LibVersion: v8_06_018 PŋVersion: v8_06 - Core+Logs - 002 Log WINDOW SAMPLE LOG - A4P 313683 - ROADE BYPASS.GPJ - v8_06. RSK Environment Ltd, Abbey Park, Humber Road, Coventry, CV3 4AQ. Tei: 02476 505600, Fax: 02476 501417, Web: www.rsk.co.uk. 14/11/1 - 16:43 MS8	3.00 - 4. (65mm of 100% r	dia)	3.00-3. 3.40		3	SPT(c) D	N=46			ravel is	grey silty sli angular to subr id sandstone. TILL)			- - - - - - - - -	<u>3.10</u> - - - - -	
G - A4P 313583 - ROADE E ww.rsk.co.uk. 14/11/17 - 11	2.00 - 3. (75mm of 100% r	dia)	2.40		6	D				at 2.9	Om becoming ve	ery stiff.		-	- (1.30) - - -	
KPASS.GPJ - v8_06. 3:43 MS8	- - ¥ - -		2.00-2.	.45	2	SPT(c)	N=22		si a q (0	ightly sa ngular to uartzite a GLACIAL	ish brown mo ndy slightly gra subrounded fir nd flint. TILL) Om cobbles of s	ivelly C ne to c	LAY. Gravel is oarse of chalk,		-	

Contract:		Roade	e Bv	mass			Client:		Roxhill		Window		le: WS02
Contract I	Ref:	Roud	, _,	-	06.09.17	Groun	d Level	:	National Grid Co-ordinate:		Sheet:		
	313	583			06.09.17		119		E:474865.0 N:251	894.1		2	of 2
Progre	1		Sam	ples / T		1					ed –	Depth	Material
Window		Depth		Туре	Results	Water	Backfill & Instru- mentation		Description of Strata		Reduced Level	(Thick ness)	Graphic Legend
- 4.00 - 5. (65mm c 100% re 	.00	5.00-5.45	5	SPT(c)	N=43			Stiff dark Gravel is a of chalk an (GLACIAL (<i>stratum</i> of sheet)	grey silty slightly gravelly angular to subrounded fine to d sandstone. TILL) copied from 3.10m from mple hole terminated at 5.45	o coarse previous	<u> </u>	- - - - - -	
Date	Drilling I	Boreho Depth		Casing Depth	Borehole Diameter	Water Depth			General Rem	narks			
		(m)		(m)	(mm)	(m)							

All dimensions in metres

Drilled

By:

DSUK LTD Logged By:

1:25

Checked

AGS

Scale:

MSouthworth

GINT_LIBRARY_V8_06.GLB LibVersion: v8_06_018 PrjVersion: v8_06 - Core+Logs - 002 | Log WINDOW SAMPLE LOG - A4P | 313583 - ROADE BYPASS.GPJ - v8_06. RSK Environment Ltd, Abbey Park, Humber Road, Coventry, CV3 4A0. Tel: 02476 505600, Fax: 02476 501417, Web: www.rsk.co.uk, | 14/11/17 - 16:43 | MS8 |

Tracked window

sampling

Plant

Used:

Premier 110

Method

Used:

Contract:	Roade	a Rv	naee			Client:		Roxhill	Windo	w Samp	ole: WS03
Contract Ref:		е Бу	-		Grour	nd Level		National Grid Co-ordinate:	Sheet		vv30.
	13583			06.09.17	Cioui	115.		E:474764.6 N:251244		_	of 1
	13503	Cam						E.4/4/04.0 N.251244		1	-
Progress Window Run	Depth		ples / ⊺ Type		Water	Backfill & Instru- mentation		Description of Strata	Reduced Level	Depth (Thick ness)	Materi Graph Leger
	0.10 0.10 0.10 0.20-1.00	1 2	ES PID B	0.0ppm			Grass of gravelly		ghtly rel is 115 10	-	$\frac{x^{1}}{x^{2}} \cdot \frac{x^{1}}{x^{2}} \cdot \frac{x^{1}}{x^{1}} \cdot \frac{x^{1}}{x^{2}} \cdot \frac{x^{1}}{x$
	0.50 - -	3	D				slightly Gravel coarse	h brown slightly silty slightly cl gravelly SAND. Sand is fine to coa is subangular to subrounded fin of quartzite, flint and chalk. ABLE GLACIOFLUVIAL DEPOSITS)	arse. e to -	(1.00)	
-	- - 1.20-1.65	1	SPT	N=14			Firm ora	angish brown silty slightly sandy gra		1.20	
	- - 1.50	4	D				subangi quartzite	Sand is fine to coarse . Grave ular to subrounded fine to coars e, chalk and flint. AL TILL)		-	
	2.00-2.45	2	SPT	N=14					- - - -	- - - (1.50) 	
	- - 2.50	5	D						-	-	
	-						Orangis (GLACI	h brown SAND. AL TILL)	112.62	(0.30)	
-	3.00-3.37 	3	SPT	N:50 for 215n	nm	<u>.•.⊟•.</u> •	Window due to r	v sample hole terminated at 3.00m d efusal.	112.32 epth _ -	-	
	-								- - -	-	
	- -								- - -	-	
	- -								-	-	
	- -								-	-	
Drillir	ng Progress a	and W	ater O	bservations					L	L	I
	Boreho	ble C	Casing	Borehole	Water			General Remar	KS		

'n,	[Drilling Pro	ogress and	Water C	bservation	s			Con	aral	Domorko		
Ē	Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth			Gene	erai	Remarks		
ilelit Ltu, Abbey Faik, Huilib			(ṁ)	(m)	(mm)	(m)	enco 2. Hand 3. Grou	untered. dug insp ndwater	bection pit to 1.2 not encontered.	20m bg	breaking ground. I, Il installed to 3.00		
							A	ll dimens	sions in metres		Scale:	1:25	
	Method Used:		d windov Iplina	V Pla		remier 11	0	Drilled By:	DSUK LTD	Logge By:	d MSouthworth	Checked By:	AGS

Contract:	Roade	Ву	pass			Client:		Roxhill		Window	w Samp	ole: WSO
Contract Ref:			Start:	05.09.17	Groun	d Level		National Grid	Co-ordinate:	Sheet:		
31	3583		End:	05.09.17		104.	35	E:47508	8.9 N:250819.0		1	of 2
Progress		Sam	ples / T	ests	er	ill & u- tion				ced	Depth	Mater
Window Run	Depth	No	Туре	Results	Water	Backfill & Instru- mentation		Description	of Strata	Reduced Level	(Thick ness)	Grapl Lege
							gravelly (CLAY. Gravel is arse of quartzite	wn very sandy slightly angular to subrounded	-	(0.40)	
	0.30 - 0.30	1	ES PID	0.0ppm			Light ve	llowish brown	clayey slightly sandy	103.95	0.40	+
	0.50	2	D				slightly g Gravel is	ravelly SILT. Sa	and is fine to coarse of ngular fine to coarse of	T .	-	
	0.70	3	В				(GLACIA					×××
	-									-	(1.00)	
	-									-	-	× ×
	1.10	4	D							-	-	×××
	1.20-1.65	1	SPT(c)	N=20								×××
	-									102.95	1.40	×××
 1.20 - 2.00	-							nish grey silty C ERED RUTLANI	LAY. D FORMATION)	+	-	Ĕ <u></u>
(85mm dia)	-						(<u> </u>			+	F	×
100% rec	-									-	-	×
	1.80		D				from	1.80m to 2.60m	light grey.		[
¥										_	_	<u> </u>
•	2.00-2.45	2	SPT(c)	N=34						-	-	Ľ <u> </u>
	-									-	-	×
	-									-	-	x
2.00 - 3.00	-											
(75mm dia) 95% rec	-									_	-	<u> </u>
	-						orangish	2.60m to 2.95m brown slightly sa	n greenish grey mottled Indv.	-	-	Ĕ <u> </u>
	2.80		D				U	0,	,	-	-	×
V	-									_		
	3.00-3.45	3	SPT(c)	N=38			at 3.0	00m light grey.		Ē.	F	<u></u>
	-									-	-	<u> </u>
	-									-	-(3.88)	É×
3.00 - 4.00	-									-	-	×
(65mm dia) 95% rec	-									-		
	-										[<u></u>
	3.80		D							-	-	
¥										-	F	[<u> </u>
	4.00-4.45	4	SPT(c)	N=8						F	F	Ľ
ا 4.00 - 5.00	-									[[×
(65mm dia) 70% rec	-									+	ŀ	×
	-									ŀ	F	
	L									_L	L	· — ×
Drilling	g Progress ar			servations				0	oral Damarka			
Date Tin	ne Borehole	e C	Casing Depth		Vater Depth			Gen	eral Remarks			
	(m)		(m)		(m)	er 2. Ha	ncountered and dug ins	spection pit to 1.2		I. No Ser	vices	
	1							not encontered	ring well installed to 2.0)0m bal		
							0		-	,on ogi.		
								nsions in metres	Scale:	1:25 Checke By:		

Contract:	Roade E	Synass			Client:		Roxhill	Windo	w Samp	le: WS04
Contract Ref:			05.09.17	Grou	Ind Level	•	National Grid Co-ordinate:	Sheet:		11004
	3583				104.		E:475088.9 N:250819.0		_	of 2
			05.09.17				L.4/ JUDU.3 N.2000 19.0	 		1
Progress	Sa	amples / ⁻			Water Backfill & Instru- mentation		Description of Strata	Reduced Level	Depth (Thick	Materia Graphic
Window Run	Depth I	No Type	Results		Bac Ins men		-	Red Le	ness)	Legend
4.00 - 5.00 (65mm dia) 70% rec 	Depth 1	D	N:50 for 229		Ba Tr	Firm greeni (WEATHEF <i>(stratum c</i> sheet)	ish grey silty CLAY. RED RUTLAND FORMATION) copied from 1.40m from previous		ness)	
	-							-	-	
								-	-	
Drillin	g Progress and	Water O	hservations						-	
Date Tir	Borehole	Casing Depth	Borehole Diameter	Wate Depth	er h		General Remarks			
	(m)	(m)	(mm)	(m)						

All dimensions in metres

Drilled

By:

DSUK LTD Logged By:

1:25

By:

Checked Rv.

AGS

Scale:

MSouthworth

Tracked window

sampling

Method

Used:

Plant

Used:

Premier 110

Contract:	Poor	0 D.	maaa			Client:		Roxhill		Windo	<i>w</i> Samp	
Contract Ref:	Road	еву	-	05.09.17	Cround			National Grid Co-ordinate	<u>.</u>	Sheet:		NS05
	3583		End:		Ground	102.		E:475094.7 N:2		Sheet.	1	of 1
Progress	5505	Sam	ples / 1	ļ			J 4	L.4/ JUJ4./ N.2	0113.3			Materi
Window Run	Depth		Туре		Water	Backfill & Instru- mentation		Description of Strata		Reduced Level	Depth (Thick ness)	
	-		. , , , , , , , , , , , , , , , , , , ,		-			OUND: Grass over d		<u>~</u>	,	
	0.20	1	ES				slightly silt	y slightly gravelly CLAY subrounded fine to	. Gravel is coarse of	-	(0.40)	
	0.20	2	PID D	0.0ppm			quartzite, b (MADE GR	rick and coal.		102.54	0.40	$\underbrace{\times}$
	_ 0.50	3	D				Firm grey	occasionally mottled orar	gish brown	-	-	<u> </u>
	0.80	6	В				silty slightly is angular	sandy slightly gravelly Cl to subrounded fine to	AY/ Gravel coarse of		(0.90)	<u> </u>
	_0.90	4	D				quartzite, fli	nt and chalk fragments.		-	_	
	1.20-1.65	1	SPT(c)	N=37						101.64	1.30	
Т	1.20	5	D				Stiff green	sh grey very clayey sli avelly SILT. Gravel is	ghtly sandy angular to	-	-	×o, · × ×
1.20 - 2.00 (85mm dia)	-						subrounded	I fine to coarse of chalk fra RED RUTLAND FORMAT	agments.	-	-	××
100% rec	1.70	7	D				from 1.	35m to 1.40m pocket of s	lt.	-	-	× . ×
¥	2.00-2.45	2	SPT(c)	N=21			from weak siltsto	1.50m to 1.55m band one.	f extremely	-	-	×°×××
T	2.00	9	D							-	-	× .*• × .*•
2.00 - 3.00	-									-	-	×°. × × ·×
(75mm dia) 100% rec	-									-	-	×°,×
1	2.70	8	D				ot 2.90	m inaragaa in ailtatana arr		-	- (3.15)	×
¥	- 3.00-3.45	3	SPT(c)	N=31			al 2.00	m increase in siltstone gra	ivel.	-	-	*°×`* ×
T	_ 3.00-3.45 -		SFIC	N-31						-	-	× × • × · × • • • × •
 3.00 - 4.00	-									-	-	× · × · × · × · ×
(65mm dia) 100% rec	-									-	-	×°.*. ×
	3.70	10	D							-	-	× ^ •×
▼	-			NUED for 154r						-	-	^°•× ^• ו×
	_ 4.00-4.30 -	4	SPI(C	N:50 for 154r	nm					-	-	* <u>°</u> ×.×
	-									- - 98.49	- - 4.45	× × × × × ×
	-						Window sa	mple hole terminated at 4.	45m depth.	-	-	
	-									-	-	
	-									-	-	
	-									-	-	
	-									-	-	
	-									-	-	
	-									-	-	
	-									-	-	
	-									-	-	
	L											
Drillin	g Progress							General De	marke			
Date Ti	me Boreho	th	Casing Depth	Borehole Diameter	Water Depth			General Re	iiidi KS			
	(m))	(m)	(mm)	(m)			ed with GPR prior to brea	king ground.	No Ser	vices	
						2. Ha	and dug insp	ection pit to 1.20m bgl,				
	Boreho	ole (Casing	Borehole		er 2. Ha	icountered. and dug insp roundwater n		king ground.		vices	

1:35 All dimensions in metres Scale: Checked Logged By: **Tracked window** Drilled Method Plant AGS Used: Used: By: By: Premier 110 sampling DSUK LTD MSouthworth

4. Gas and groundwater monitoring well installed to 4.00m bgl.

Contract:	Roade	e By	pass			Client:		Roxhill	Wind	ow Samp	ole: WS06
Contract Ref:			Start:	05.09.17	Groun	d Level:		National Grid Co-ordinate:	Shee	t:	
31	3583		End:	05.09.17		97. ⁻	15	E:475179.7 N:2507		1	of 2
Progress		1	ples / T		Water	Backfill & Instru- mentation		Description of Strata	Reduced Level	Depth (Thick	Materia Graphi
Window Run	Depth	No	Туре	Results	3	un de la de				ness)	Legen
	0.10 - 0.10 -	1	ES PID	0.0ppm			CLAY with angular to quartzite. (TOPSOIL)	dark brown sandy slightly frequent roots and rootlets. C subrounded fine to co	Gravel is arse of 96.85	(0.30) 0.30	
	0.50	2	в				CLAY. Gra	jish brown sandy slightly vel is angular to subrounded uartzite and flint.		(0.50)	
	0.70	3	D				(GLACIAL		96.35	5 0.80	<u> </u>
- 		4	D	NI 40			slightly gra	wish brown clayey slightly ivelly SILT. Gravel is ano I fine to coarse of siltstone. RED RUTLAND FORMATION	/ sandy gular to	(0.60)	
1	1.20-1.65	1	SPT(c)	N=18					95.75	5 1.40	
 1.20 - 2.00 (85mm dia) 100% rec	1.40-1.90 1.50 1.50	7 10 5	B ES D				rich CLAY v	olackish brown to black silty vith frequent roots and rootlet RED RUTLAND FORMATION	organic s.	- - - (0.50)	
2.00 - 3.00 (75mm dia) 64% rec	- - - 2.00-2.45 - - - - - - -	2 6	SPT(c) D	N=10			Gravel is a of siltstone.	slightly sandy slightly grave ngular to subrounded fine to RED RUTLAND FORMATION	coarse	5 <u>1.90</u> - - - - - - - - - - - - - - - - - - -	x x x x x x x x x x x x x x x x x x x
3.00 - 4.00 (65mm dia) 100% rec	- - - - - - - 3.20 - -	3	SPT(c) D	N=9			Light grey v (WEATHEF	ery silty SAND. RED RUTLAND FORMATION	- - -	(0.55)	
4.00 - 5.00 (55mm dia) 100% rec	- - - 4.00-4.45 - 4.00 - -	4 8	SPT(c) D	N=10			brown silty	grey occasionally mottled of CLAY. RED RUTLAND FORMATION	-) - 3.65 - - - - - - - - - -	

Road,	Ε	Drilling Pro	gress and	Water C	bservation	S			Can	aral	Domorko		
	Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth			Gene	erai	Remarks		
ment Ltd, Abbey Park, Humber			(m)	(m)	(mm)	(m)	enco 2. Hand 3. Grou	untered. dug insp ndwater	Dection pit to 1.2 encontered at 3	20m bgl .50m b	breaking ground. l, gl. Il installed to 4.00		
Environment							A	ll dimens	sions in metres		Scale:	1:25	
RSK Env	Method Used:		d windov npling	V Pla Use		emier 11	0	Drilled By:	DSUK LTD	Logge By:	d MSouthworth	Checked By:	AGS

Contract:							Client:				Window		
		Roade		-					Roxhill				WS06
Contract F					05.09.17	Groun	d Level		National Grid Co-ordinate:		Sheet:		
	3135	83		End:	05.09.17		97.	15	E:475179.7 N:25072	28.3		2	of 2
Progres			-	oles / T		Water	Backfill & Instru- mentation		Description of Strata		Reduced Level	Depth (Thick	Materia Graphic
Window				Туре	Results	3	Ba Ir me		· · · · · · · · · · · · · · · · · · ·		Re L	ness)	Legend
4.00 - 5. (55mm d 100% re 	00 - ia) _ ec _	-	9	SPT(c)	N=32			brown silty (WEATHEF (stratum c sheet)	grey occasionally mottled ora CLAY. RED RUTLAND FORMATION) popied from 3.65m from pr	evious	<u> </u>	ness) (1.80) (1.80) - - - - - - - - - - - - -	
)rilling Dr	ouress and	4 \//	ater Or	oservations								
Date	Time	Borehole Depth (m)		ater Ot asing Depth (m)	Borehole Diameter (mm)	Water Depth (m)			General Rema	irks			
						. ,							

				A	ll dimens	ions in metres		Scale:	1:25	
Method Used:	Tracked window sampling	Plant Used:	Premier 110		Drilled By:	DSUK LTD	Logge By:		Checked By:	AGS

Contract:	F	Doodo	P.	nacc			Client:		Roxhill		Windo	v Samp ۱	ole: WS07
Contract F		Roade	Бу		05.09.17	Crown	dlaval		National Grid Co-ordinate:		Sheet:		w30/
	31358	2				Groun	102.		E:475127.9 N:2506	260.2	Sheet.	1	of 1
	1		Cam		05.09.17			UI	E.4/512/.9 N.2500	500.5	σ		1
Progres Window F		Depth		ples / T Type	Results	Water	Backfill & Instru- mentation		Description of Strata		Reduced Level	Depth (Thick ness)	Materi Graph Legen
	- - - 0.20 - 0.20		1	ES PID	0.0ppm			CLAY with	dark brown sand slightly frequent roots and rootlets. C subrounded fine to coarse te.	Gravel is	- - - - -	0.30 (0.40)	<u></u>
	_ 0.5(- - -	0	2	D				CLAY. Gra		gravelly d fine to	- <u>101.31</u> - -	- /	
1.20 - 2.0	_ 1.20 00 _	0-1.65	3 1 4	D SPT(c) D	N=30			slightly gra	ellowish brown clayey slight avelly SILT. Gravel is ang I fine to coarse of siltstone. RED RUTLAND FORMATION	gular to	- - - -	- - - (1.10) - - -	× × × × × × × × × × × ×
(85mm di 100% re	c´ - - 1.9	0 0-2.45	5 2	D SPT(c)	N=31			laminated S WEATHEr\	weak light yellowish brown ILTSTONE. RED RUTLAND FORMATION	ر د ۱)	- 100.21 - - 99.91	1.80 - 2.10	× × × × × × × × × × × × × × × × × × ×
2.00 - 3.0 (75mm di 100% re 3.00 - 4.0 (65mm di 100% re	ia)	0-3.45	7	D SPT(c) D SPT(c)	N=33 N:50 for 2951	nm		sandy sligh subrounded (WEATHEF Stiff to very CLAY. (WEATHEF at 2.80	Ilight yellowish brown clayer ty gravelly SILT. Gravel is an tine to coarse of siltstone. RED RUTLAND FORMATION stiff greenish grey silty slight RED RUTLAND FORMATION m occasional iron staining. m mudstone lithorelicts.	ngular to 1) ly sandy	99.71 - - - - - - - - - - - - - - - - - - -	2.30	
								Window sa	mple hole terminated at 4.45r	n depth.	- - 97.56 - - -	- - - <u>4.45</u> - -	
												-	
	L		I				1 1				L		L
D	rilling Pro	ogress ar	nd W	ater Ob	oservations				Comanel Dam	orles			
Date	Time	Borehole Depth (m)		Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)	1		General Rem		No Ser		

encountered. 2. Hand dug inspection pit to 1.20m bgl, 3. Groundwater not encontered. 4. Gas and groundwater monitoring well installed to 2.50m bgl.

All dimensions in metres 1:35 Scale: Checked **Tracked window** Drilled Method Plant Logged AGS Used: Used: By: By: By: Premier 110 sampling DSUK LTD MSouthworth

Contract:		Roade	۹R۱	nase			Client:		Roxhill	vvindo	w Samp	ole: WS08
Contract F	Ref:	Roadt	נם י		05.09.17	Groun	d Level		National Grid Co-ordinate:	Sheet:		
Sonnaor	313	583			05.09.17	Croun	101.		E:475122.6 N:250604.			of 2
Progres	1	505	San	ples / T		-		70	L.473122.0 N.230004.			
Window F		Depth		туре	Results	Water	Backfill & Instru- mentation		Description of Strata	Reduced Level	Depth (Thick ness)	Materi Graph Leger
	-							frequent ro	r sandy slightly gravelly CLAY v ots and rootlets. Gravel is angular d fine to coarse of quartzite.	/ith	(0.30)	<u>`</u>
	-							(TOPSOIL		101.46	0.30	
).40).40	1	ES PID	0.0ppm			CLAY. Gra coarse of f	gish brown sandy slightly grave vel is angular to subrounded fine int and quartzite.	to	- (0.50)	
	F	0.60	2	D				(GLACIAL	TILL)	-	-	
	- 0).70	5	В				Stiff to ve	ry stiff light yellowish brown clay	100.96	0.80	× ×
).90	3	D				slightly sau	ndy slightly gravelly SILT. Grave subangular fine to coarse of siltsto	is	-	
	-	1.10	4	D	N 07				RED RUTLAND FORMATION)	_		×××
	1	1.20-1.65	1	SPT(c)	N=37					-	-	Â× x
	Ē									-		×××
1.20 - 2.0 (85mm di										-	-	
100% re										-	-	×××
	[1	1.80	7	D					.80m to 1.90m thin band of extrem	ely	(2.10)	× ×
	_	2.00-2.45	2	SPT(c)	N=46			weak siltste	one.	-	-	
Ĩ		2.00-2.45	8		11-40					-	-	×××
	Ē									-		× ×
 2.00 - 3.0										-	-	
(75mm di	a) 🗍									-	-	×××
100% re	C _									-	-	× ×
	-									00.06	2.90	
V	F							Stiff to very	/ stiff grey silty CLAY with occasio	98.86 nal	2.90	×
	[3	3.00-3.45	3	SPT(c)	N=36			mudstone İ (WEATHE	ithorelicts. RED RUTLAND FORMATION)	-	F	<u> </u>
	-							,	,	-	-	
	Ē									-	-	
3.00 - 4.0 (65mm di		3.40	9	D						-	-	<u> </u>
87% red										-	-	<u> </u>
	Ē									-	-	×
	Ē									-	-	×
	— 4	1.00-4.45	4	SPT(c)	N=35					-	╞	×
T 4.00 - 5.0	F									È	(2.55)	
(65mm di	a)									F	-	
81% red	-	1.40	10	D						ŀ	F	x
I	L			1						L		· — ¥
D	rilling F	Progress a		Vater Ol Casing	servations Borehole	Water	_		General Remark	S		
Date	Time		n	Depth (m)	Diameter (mm)	Depth (m)						
		(,,,,)		()		()		cation scan	ned with GPR prior to breaking gro	und. No Se	rvices	

Hand dug inspection pit to 1.20m bgl,
 Groundwater not encontered.
 Gas and groundwater monitoring well installed to 3.00m bgl.

RY_V ment													
IBRARY							A	ll dimen	sions in metres		Scale:	1:25	
	Method	Tracked	window					Drilled		Logge	d	Checked	
GINT_L RSK En	Used:	sam	pling	Used	^{l:} Pr	emier 110		By:	DSUK LTD	By:	MSouthworth	By:	AGS

Contract:	Roade	Bypas	S		Client:		Roxhill		Window	w Samp	le: WS08
Contract Ref:			05.09.17	Groun	d Level	:	National Grid Co-ordinate:		Sheet:		
31	3583	End:	05.09.17		101	.76	E:475122.6 N:25060	4.3		2	of 2
Progress		Samples /							sed M	Depth	Materia
Window Run		No Type		Water	Backfill & Instru- mentation		Description of Strata		Reduced Level	(Thick ness)	
4.00 - 5.00 (65mm dia) 81% rec ¥		5 SPT(4				Stiff to very mudstone I (WEATHEF (stratum c sheet)	v stiff grey silty CLAY with occa ithorelicts. RED RUTLAND FORMATION) sopied from 2.90m from pre	- evious - - - - -	<u>96.31</u>		
	me Borehole	Casing Depth	Borehole Diameter	Water Depth			General Rema	rks			
	(m)	(ṁ)	(mm)	<u>(</u> ḿ)							

All dimensions in metres

Drilled

By:

DSUK LTD Logged By:

1:25

By:

Checked

AGS

Scale:

MSouthworth

Tracked window

sampling

Method

Used:

Plant

Used:

Premier 110

Contract:		Roade	e Rv	nass				Client		Roxhill	Windo	w Samp	wsos
Contract F	Ref [.]	Noaut	, Dy		, 05.09.17	Gro	und	Leve	ŀ	National Grid Co-ordinate:	Sheet		1100.
Jonnada		3583		End:				113		E:474968.6 N:250989.			of 1
Progres		0000	Sam	ples / T						E.474300.011.200303.		1	<u> </u>
Window		Depth		Туре			Water	Backfill & Instru- mentation		Description of Strata	Reduced Level	Depth (Thick ness)	
	-	0.20		ES PID	0.0ppm				Grass over gravelly CL fine to coar (TOPSOIL)		itly ed - - 113.37	(0.40)	$\frac{\sqrt{1}}{\sqrt{1}} \cdot \frac{\sqrt{1}}{\sqrt{1}}$
		0.60		D					CLAY. Sa		is T	-	
	- 	1.00 1.20-1.65	1	B SPT(c)	N=40		~ ~ ~ ~ ~ ~		from 1 Gravel incl	.20m very stiff and mottled light gr udes subangular to angular fine	- - - ey. [to]	- - (1.60)	
1.20 - 2. (85mm d 100% re	ia)	- - 1.60		D			* * * * * * * * *		coarse silts	tone lithorelicts.	- - -	-	
X		- 2.00-2.45 -	2	SPT(c)	N=17				gravelly CL of siltstone	lark grey silty slightly sandy sligh AY. Gravel is subangular to angu lithorelicts. RED RUTLAND FORMATION)	111.77 htly lar - -	2.00	
2.00 - 3. (75mm d 100% re	ia)	2.60		D					0 0 0 0 0		-	- (1.00) - -	
		- - 3.00-3.24 - -	3	SPT(c)	N:50 for 154	mm			Window sa due to refus	mple hole terminated at 3.00m de sal.	110.77 oth	- 3.00 - -	
		- - -									- - -	-	
	-	- - -									- - -	-	
	-	-									-	-	
C	rilling	g Progress a	and W	ater Ol	bservations								
Date	Tim	Boreho	le (Casing Depth	Borehole Diameter	Wat Dep				General Remark	S		

(m) (m) (mm) (m) 1. Location scanned with GPR prior to breaking ground. No Services encountered. 2. Hand dug inspection pit to 1.20m bgl, Groundwater not encontered.
 Gas and groundwater monitoring well installed to 3.00m bgl. 1:25 All dimensions in metres Scale: Checked **Tracked window** Drilled Method Plant Logged AGS Used: Used: By: By: By: sampling Premier 110 DSUK LTD MSouthworth

Contract:	F	Roade	Bv	pass			Client:		Roxhill	Windo	w Samp	le: WS10
Contract F					06.09.17	Groun	d Level	:	National Grid Co-ordinate:	Sheet:		
	31358	3			06.09.17		117.		E:474832.9 N:251829	0	1	of 1
Progres	s	Ś	Samp	ples / T	ests	e	u- tion			ced	Depth	Materi
Window F	Run D	Depth	No	Туре	Results	Water	Backfill & Instru- mentation		Description of Strata	Reduced Level	(Thick ness)	Graph Legen
	-							CLAY with	dark brown slightly gravelly sa frequent roots and rootlets. Grave subrounded fine to coarse	el is	- 0.30	
_	 0.4(0.5(0.5(0.6(1.1()))	1 3 2 6 1	ES PID B D SPT(c)	0.0ppm N=30			quartzite. (TOPSOIL) Firm oran gravelly si subrounded and ironsto (GLACIAL	gish brown slightly sandy slig Ity CLAY. Gravel is angular I fine to coarse of chal, quartzite, ne.	htly to	-(1.30)	
1.20 - 2.((85mm di 100% re	ia) - c - _ 1.80 _ 2.00))-2.45	2	D SPT(c)	N=22			silty slightly is fine to co	f light grey mottled orangish bro v sandy slightly gravelly CLAY. Sa arse. Gravel is angular to subang se of chalk and quartzite. TILL)	and	1.60 	x :
2.00 - 3.0 (75mm di 100% re	ia) :c 2.80 3.00))-3.45	3	D SPT(c)	N=18			Stiff dark CLAY.	grey mottled orangish brown s	- - - - - silty	3.20	
3.00 - 4.0 (65mm di 100% re	ia) c 3.80))-4.44	4	D SPT(c)	N:50 for 290r	nm		(GLACIAL	TILL)	- - - - - - - - - - - - - - - - - - -	- (1.25) - (1.45)	
								Window sa due to refus	mple hole terminated at 4.45m de sal.		-	
											-	
D	rilling Pro	-	_		oservations	14/-1			General Remark			
Date	Time	Borehole Depth (m)		Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)			ned with GPR prior to breaking gro			

GINT_LIBRARY_V8_06.GLB LibVersion: v8_06_018 PrjVersion: v8_06 - Core+Logs - 002 | Log WINDOW SAMPLE LOG - A4P | 313583 - ROADE BYPASS.GPJ - v8_06. RSK Environment Ltd, Abbey Park, Humber Road, Coventry, CV3 4AQ. Tel: 02476 505600, Fax: 02476 501417, Web: www.rsk.co.uk, | 14/11/17 - 16:44 | MS8 |

1:35 All dimensions in metres Scale: Checked **Tracked window** Drilled Method Plant Logged AGS Used: Used: By: By: By: sampling Premier 110 DSUK LTD MSouthworth

encountered.

Hand dug inspection pit to 1.20m bgl,
 Groundwater not encontered.
 Gas and groundwater monitoring well installed to 4.00m bgl.

Contract:	Roade	By	pass			Client:		Roxhill		Windo	w Samp	le: WS11
Contract Ref:			Start:	06.09.17	Grour	nd Level	:	National Grid Co-ordinate	:	Sheet:		
31	3583		End:	06.09.17		121	33	E:475066.5 N:25	2232.3		1	of 2
Progress		Sam	oles / T	ests	L	tion		•		el ced	Depth	Materi
Window Run	Depth	No	Туре	Results	Water	Backfill & Instru- mentation		Description of Strata		Reduced Level	(Thick ness)	Graph Legen
	- 0.20 - 0.20 -		ES PID	0.0ppm			gravelly C Gravel is a of quartzite (GLACIAL	er dark brown slightly sar LAY with frequent roots an angular to subrounded fine a. TILL/POSSIBLE MADE GF tiff brown grey mottled o	nd rootlets. e to coarse ROUND)	- 121.03	- (0.30) - 0.30 -	
	- 0.60 - -		D				slightly gra to subrour quartzite. (GLACIAL	velly sandy CLAY. Grave nded fine to coarse chall TILL/POSSIBLE MADE GF E MADE GROUND)	l is angular <, flint and	-	- - -	
	1.00		в							-	-	\bigotimes
	1.20-1.65 -	1	SPT(c)	N=22				ning stiff from 1.20m. ning light orangish brown fro	om 1.30m	-	- - (2.30)	
1.20 - 2.00 (87mm dia) 100% rec	1.50 - -		D							-	- - -	
	- 2.00-2.45 - -	2	SPT(c)	N=23						-	- - - -	
 2.00 - 3.00 (77mm dia) 100% rec	2.50		D					ff orangish brown silty slig		118.73	2.60	
	-						subangula	avelly CLAY. Sand is fine r to subrounded fine to lint and quartzite. TILL)		-	-	**
	3.00-3.45 - - -	3	SPT(c)	N=15						-	-	
3.00 - 4.00 (67mm dia) 80% rec	- 3.50 -		D							- - -	- - -	
4.00 - 5.00	- - 4.00-4.45 -	4	SPT(c)	N=26			becom	ning stiff from 4.00m		- - -	- - (2.64) - -	
(57mm dia) 100% rec 	-									-	-	

oad, C	I	Drilling Pro	gress and	Water Ol	servation				Con	orol	Remarks		
Humber Road,	Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)							
Ltd, Abbey Park,				,	()	,	enco 2. Hand 3. Grou	untered. dug insj ndwater	Dection pit to 1.2 not encontered.	20m bgl	breaking ground. , Il installed to 5.00		
Environment							A	ll dimens	sions in metres		Scale:	1:25	
RSK En	Method Used:		d windov npling	V Plan Use		emier 11	0	Drilled By:	DSUK LTD	Logge By:	d MSouthworth	Checked By:	AGS

1:25

Checked By:

AGS

Scale:

MSouthworth

Contract:		Deede	D.				(Client:		Roxhill		Window		
Contract I	Dof	Roade	Ρу	-		Crow		Level:		National Grid Co-ordinate:		Sheet:		WS11
Contract		500			06.09.17	Grou						Sneet:	~	. 0
Ĺ		8583		1	06.09.17			121.	33	E:475066.5 N:25223	52.3		2	of 2
Progree Window		Depth		ples / T Type	Results	Motor	water	Backfill & Instru- mentation		Description of Strata		Reduced Level	Depth (Thick	Material Graphic Legend
VVIIIGOV		•	NU		TCSUILS	· >	>	<u>а</u> е ••н•••	Firm to stif	f orangish brown silty slightly	sandy	- <u>R</u>	ness)	
- 4.00 - 5. (57mm c 100% re 	.00 - dia) _	4.50 4.80-5.24		D	N:50 for 285				slightly gra subangular quartzite, fli (GLACIAL (stratum c sheet)	popied from 2.60m from promotion promotion from promotion promoti promotion promotion promotion promotion promotion	coarse se of evious	<u> <u> <u> </u> /u></u>	- - - -	
r	Drilling	Progress an	nd /\//		nservations			 				L		
Date	Tim	Borehole		Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)	r 1			General Rema	rks			

All dimensions in metres

Drilled

By:

DSUK LTD Logged By:

Method

Used:

Tracked window

sampling

Plant

Used:

Premier 110

Roade	- 1				1		Roxhill	1		WS1 2
3583		Jotan.	06.09.17	Grou	nd Level		National Grid Co-ordinate:	Sheet:		
		End:	06.09.17		119.	74	E:475138.6 N:252273.3		1	of 2
	Sam	ples / T	ests	P	ru- ation			ced	Depth	Mater
Depth	No	Туре	Results	Water	Backfill & Instru- mentation		Description of Strata	Reduced Level	(Thick ness)	Graph Leger
- 0.30	1	ES	ი იიიო			gravelly Cl Gravel is a of quartzite (POSSIBL	LAY with frequent roots and rootlets angular to subrounded fine to coarse a. E MADE GROUND)	y 	(0.40)	
-	2		o opp			slightly gra to subroun quartzite.	avelly sandy CLAY. Gravel is anguland ded fine to coarse of chalk, flint and	r	-	
0.90	4	B						-	-	\bowtie
1.10 1.20-1.65	3 1	D SPT(c)	N=9					-	- - -	
1.60	5	D						-	-	
- 2.00-2.45 2.00	26	SPT(c) D	N=11			silty CLAY to coarse o (GLACIAL	. Gravel is angular to subrounded fine of chalk. TILL/POSSIBLE MADE GROUND)	y e	(0.40)	
2.60	7	D				Firm oran sandy sil subangular (GLACIAL	gish brown slightly gravelly slightl ty CLAY. Gravel is angular tr r fine to coarse of chalk and quartzite TILL/POSSIBLE MADE GROUND)	ý D	-	
- 3.00-3.45 -	3	SPT(c)	N=15			becom	ning firm to stiff from 3.00m bgl	-	-	
- - - 3.50	8	D				from clay.	3.40m to 3.60m pockets of dark gre	- - - -	-	
- - - 4.00-4.45	4	SPT(c)	N=20			becom	ning stiff from 4.00m.	- - - -	(3.15)	
	0.30 0.30 0.30 1.10 1.20-1.65 1.60 2.00-2.45 2.00 2.60 3.00-3.45	0.30 1 0.30 2 0.80 2 0.90 4 1.10 3 1.20-1.65 1 1.60 5 2.00-2.45 2 2.00 7 3.00-3.45 3 3.50 8	0.30 1 ES 0.30 1 ES 0.30 2 D 0.80 2 D 0.90 4 B 1.10 3 D 1.20-1.65 1 SPT(c) 1.60 5 D 2.00-2.45 2 SPT(c) 2.00-3.45 3 SPT(c) 3.00-3.45 3 SPT(c) 3.50 8 D	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.301ES PID $0.0ppm$ 0.30 1 $ESPID0.0ppm0.802D4B0.904B1.103DSPT(c)1.20-1.6511.605D1.605D2.00-2.452SPT(c)2.00-2.4522.00-2.4522.00-2.4522.00-2.4533.00-3.4533.508D$	0.30 1 ES 0.0ppm 0.0ppm 0.80 2 D 0.0ppm 0.0ppm 0.80 2 D 0.0ppm 0.0ppm 1.10 3 D 1.20-1.65 1 SPT(c) N=9 1.60 5 D D 0.0ppm 0.0ppm 0.0ppm 0.0ppm 2.00-2.45 2 SPT(c) N=9 0.0ppm 0.0ppm 0.0ppm 2.00-2.45 2 SPT(c) N=11 0.0ppm 0.0ppm 0.0ppm 2.60 7 D 0.0ppm 0.0ppm 0.0ppm 0.0ppm 0.0ppm 3.00-3.45 3 SPT(c) N=15 0.0ppm 0.0ppm 0.0ppm	0.30 1 ES 0.0ppm Grass over gravely CI 0.30 1 ES 0.0ppm Firm grey slightly gravely CI 0.30 2 D 0.0ppm Firm grey slightly gravely CI 0.80 2 D 0.0ppm Firm grey slightly gravely CI 0.80 2 D 0.0ppm Firm grey slightly gravely CI 0.80 2 D 0.0ppm Firm grey slightly gravely CI 1.10 3 D 1.20-1.65 1 SPT(c) 1.60 5 D Firm dark silty CLAY to coarse or to co	0.30 1 ES 0.0ppm Grass over dark brown slightly sandy slightly gravelis angular to subrounded fine to coarse of quarzite. 0.30 1 ES PID 0.0ppm 0.30 2 D D 0.80 2 D D 0.90 4 B D 1.10 3 D D 1.20-1.65 1 SPT(c) N=9 1.60 5 D D 2.00-2.45 2 SPT(c) N=11 2.00-2.45 2 SPT(c) N=11 2.60 7 D D 3.00-3.45 3 SPT(c) N=15	0.30 1 ES PID 0.0ppm Grass over dark brown slightly sandy slightly gravelly CLAY with frequent roots and rootlets. Gravel is angular to subrounded fine to coarse of quartzite. 119.34 0.30 1 ES PID 0.0ppm 119.34 0.80 2 D 119.34 0.80 2 D 119.34 0.80 4 B - 1.10 3 D - 1.20-1.65 1 SPT(c) N=9 1.60 5 D - 2.00-2.45 2 SPT(c) N=11 1.80 5 D - 2.00-2.45 2 SPT(c) N=11 2.00-2.45 2 SPT(c) N=11 3.00-3.45 3 SPT(c) N=15 3.00-3.45 3 SPT(c) N=15 3.50 8 D -	0.30 1 ES PID 0.0ppm Grass over dark brown slightly gravelly clay with frequent roots and rootlets. Gravel is angular to subrounded fine to coarse of quartzite. (POSSIBLE MADE GROUND) 119.34 0.40 0.30 2 D 119.34 0.40 0.80 2 D Firm greyish brown mottled orangish brown slightly gravelly sandy CLAY. Gravel is angular to subrounded fine to coarse of chalk, flint and quartzite. 119.34 0.40 1.10 3 D Image: state sta

ad, 0	[Drilling Pro	gress and	Water 0	Observation	s			Can	aral	Domorko		
Humber Road,	Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth			Gene	erai	Remarks		
Ēnvironment Ltā, Abbey Park, Hum			(m)	(m)	(mm)	(m)	enco 2. Hand 3. Grou	untered. dug insj ndwater	Dection pit to 1.2 not encontered.	20m bgl	breaking ground. , Il installed to 5.00		
/ironr							Α	II dimens	ions in metres		Scale:	1:25	
RSK Env	Method Used:		d windov npling	V Pla Us		remier 11	0	Drilled By:	DSUK LTD	Logge By:	d MSouthworth	Checked By:	AGS

Contract:	F		D . <i></i>				Client:		Dovhill		Window	v Sampl	
Contra 1 D		loade	ву			0			Roxhill		0h - 1	N N	VS12
Contract R		•			06.09.17	Groun	d Level		National Grid Co-ordinate:		Sheet:	•	
	31358				06.09.17	<u> </u>	119		E:475138.6 N:25227	3.3	~ ~		of 2
Progress	3		Samp	oles / T	ests	Water	cfill & tru- tation		Description of Strata		nced	Depth (Thick	Materia Graphic
Nindow R	un D	epth	No	Туре	Results	Na			-		Reduced Level	ness)	Legend
4.00 - 5.0 (65mm dia 100% rec ↓	a) _ ; _)-5.45	5	SPT(c)	N=31			Firm orang sandy silt subangular (GLACIAL (POSSIBLE (stratum c sheet)	pish brown slightly gravelly sl y CLAY. Gravel is angula fine to coarse of chalk and quar TILL/POSSIBLE MADE GROUN MADE GROUND) opied from 2.30m from pre	r to t tzite ID) - vious - - -	-	- - - - - -	
Dr	illing Pro				oservations				Conoral Doma	rko			
Date	Time	Borehole Depth	: C	asing Depth	Borehole Diameter	Water Depth			General Rema	ſKS			
		(m)		(m)	(mm)	(m)							

All dimensions in metres

Drilled

By:

DSUK LTD Logged By:

1:25

Checked By:

AGS

Scale:

MSouthworth

GINT_LIBRARY_V8_06.GLB LibVersion: v8_06_018 PrjVersion: v8_06 - Core+Logs - 002 | Log WINDOW SAMPLE LOG - A4P | 313583 - ROADE BYPASS.GPJ - v8_06. RSK Environment Ltd, Abbey Park, Humber Road, Coventry, CV3 4AQ. Tel: 02476 505600, Fax: 02476 501417, Web: www.rsk.co.uk, | 14/11/17 - 16:44 | MS8 |

Method

Used:

Tracked window

sampling

Plant

Used:

Premier 110

		Road	e Bypass							Roxhi	ill				Bŀ
Contract Re	f:		Start:	18.09	9.17	Grou	und L	evel:		National Gr	id Co-ordi	nate:	Sheet:		
3	3135	583	End:	20.09	9.17		1	19.7	0	E:4751	41.6 N	:252265.6		1	of
		Samples	& Testing	Ν	/lecha	anical	Log	di ⊢ ≊	er 19				ced	Depth	Ma
Depth (m)	No	Туре	Results	TCR (%)	SCR (%)	anical RQD (%)	lf (mm)	Backfi	Water		iption of S		Reduced Level	(Thick ness)	Gr
0.50 0.50 0.60 0.60 1.00-1.45	1 2 1	es Pid D Pid SPT	0.0ppm 0.0ppm N=11							subrounded fine chalk and limest	silty slight vith occas ulders. vel is to coarse	ly sandy slighty ional limestone Sand is fine to subangular to e quartzite, flint,		- - - - - - - - - - -	
1.60 1.60 2.00-2.45	3 2	D PID SPT	0.0ppm N=16										- - - - - - -	- - - - - -	
2.60 2.60 3.00-3.45	4 3	D PID SPT	0.0ppm N=24							stiff from 3.0	00m bgl.			(5.30)	
4.00-4.45	4	SPT	N=14							becoming from 3.50m	brown or	ange in colour	- - - - - - - -	- - - - - - - -	
5.00-5.45	5	SPT	N=18							stiff from 5.0 Stiff dark grey	light grey	mottled brown	- - - - - - - - - - - - - - - - - - -	- - - - 5.30	
5.60 5.60 6.00-6.45	5 6	D PID SPT	0.0ppm N=19							silty slightly say occasional cobb is fine to coarse subrounded fin Cobbles are 250mm bgl. (GLACIAL TILL)	oles of lin Gravel i e to coa subangula	nestone. Sand s subangular to irse limestone.	- - - - - -	- - - - - -	<u></u>
6.60 6.60 7.00-7.45	6 7	D PID SPT	0.0ppm N=24										- - - - - -	-(3.70)	p' \$ \$
7.60 7.60 8.00-8.45	7 8	D PID SPT	0.0ppm N=24										- - - - - - -	- - - - - - -	<u>, 14, 14, 14, 15</u>
8.60 8.60	8	D PID	0.0ppm							brown orang	ge at 8.70	m bgl.	- - 110.70	9.00	₽. <u> </u> 0. <u>%</u>
Boi	ring F	rogress	and Water Ob	servat	ions					~					
	ate Time Depth Depth Depth Dameter (mm) D J9/17 1.00 None 300			Wate Dept Dry Dry Dry	h , ,	en 2. Ha 3. Gr 4. Ga	count nd du ound\	n scanned with GP ered. Jg inspection pit tp water not encounte d groundwater mor	R prior to 1.20m bg ered.	l.					
Method			Plan	 t					_	mensions in metre	es Logged	Scale:	1:50 Checke		3

Road,	E	Boring Pro	ogress and	Water Ob	servations	3				noral	Domorko		
	Date	Time	Borehole	0	Borehole Diameter	Water			Ge	nerai	Remarks		
Humber			Depth	Depth	(mm)	Depth	1 1 00	ation sca	nned with GE	PR prior to	breaking group	nd. No services	
Ť	19/09/17		1.00	None	300			ountered			breaking groun		
Park,	19/09/17		19.50	9.00	123	Dry			spection pit tp	1.20m bg	gl.		
Abbey	19/09/17		19.50	9.00	123	Dry	3. Gro	undwate	not encount	ered.	-		
Environment Ltd, Abl	19/09/17		30.00	9.00	123	Dry		and gro pletion.	undwater mo	nitoring we	ell installed to 20	0.00m bgl upon	
/iron							ŀ	All dimen	sions in metre	es	Scale:	1:50	
	Method			Plan	•			Drilled		Logged		Checked	
RSK	Used:	Rota	ry Cored	Use	d: Coma	icchio GEC	0 205	By:	DSUK LTD	By:	RSalama	By:	AGS

Contract:		D					Client:			Davids!!!	Boreho		
0	r -	Road	de Bypass	40.0		0				Roxhill	0		BH01
Contract Ref						Grou	nd Level:			National Grid Co-ordinate:	Sheet:	-	_
3	13	583	End:				119.7			E:475141.6 N:252265.6		2	of 4
Dauth		Sample	s & Testing	Ν	Mecha	anical	Log 🖉 – je	er l			ced el	Depth	
Depth (m)	No	Туре	Results	TCR (%)	SCR (%)	RQD (%)	Backfill & Bo [–] Instru- mentation	Water		Description of Strata	Reduced Level	(Thick ness)	Graph Legen
9.00-10.00 9.00-9.45 9.00-9.19	9 9	SPT C	N=48	35	19	0			space (BLI	ium strong dark grey silty DSTONE with horizontal medium ced planar stepped clean fracture. SWORTH LIMESTONE RMATION)		(1.00)	
10.00-11.50 10.15	10	D		×	X	X		•	ή	mottled light grey from 9.60m bgl. . band of firm clay from 9.60m to m bgl.	109.70	10.00	
10.15	10	PID	0.0ppm	100	92	80		0 0 0 0 0 0 0 0 0 0 0 0 0	LIM clos fract	to extremely strong light grey ESTONE with horizontal to vertical ely spaced planar smooth clean ures.	-	-	
-								• • •	FOF	SWORTH LIMESTONE RMATION) . mottled brown beige from 10.65m		-	
11.50-13.00 11.83-12.00		С						•		band of soft grey clay from 11.10m 1.15m bgl.	- - - -	-	
12.00-12.06			N:30 for 10mm	97	79	 75		• • •		band of very soft dark grey clay from 0, to 12.05m bgl.	- - - -	-	
					, in the second						-	(5.20)	
13.00-14.50 13.20-13.50 13.40 13.40		C D PID	0.0ppm	93	78	68				light grey in colour from 13.50m bgl.	- - - - - - - - - - - - - - -	- - - - - - - - - - - - -	
14.50-16.00 14.80-15.00	14	С		X	X	X		0,0,0,0,0,0 0,0,0,0,0,0,0			-	-	
15.00-15.06	11	SPT	N:50 for 20mm	82	81	68		•	Med	ium strong to strong dark grey silty DSTONE with horizontal to vertical,	104.50 - 104.20	-	
15.60 15.60 16.00-17.50	15	D PID	0.0ppm					<u> </u>	clos fract (BLI	ely spaced planar smooth tight clean iures. SWORTH LIMESTONE RMATION)	-	-	
16.70-16.95	16	С		91	80	79			LIM med oper (BLI	v to extremely strong grey ESTONE with horizontal close to ium space planar smooth partly n clean fractures. SWORTH LIMESTONE RMATION)		(1.95)	
17.50-19.00										cription on next sheet	- -102.25 -	17.45	
				93	85	81					-	-	

oad, C	I	Boring Pro	ogress and	Water Ob	servations	3			Co	noral	Remarks			
Humber Road,	Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth			Ge	leiai	Remarks			
			Deptin	Берш	(mm)	Берш								
ey Park,														
Ltd, Abbey														
Environment							A	ll dimen	sions in metre	s	Scale:	1:50		
RSK Env	Method Used:	Rota	ry Cored	Plan Use		icchio GEC	205	Drilled By:	DSUK LTD	Logged By:	RSalama	Checked By:	B	AGS

GINT_LIBRARY_V8_06.GLB LibVersion: v8_06_018 PrjVersion: v8_06 - Core+Logs - 002 | Log COMPOSITE LOG - A4P | 313583 - ROADE BYPASS.GPJ - v8_06. RSK Environment Ltd, Abbey Park, Humber Road, Coventry, CV3 4AQ. Tel: 02476 505600, Fax: 02476 501417, Web: www.rsk.co.uk, | 10/11/17 - 14:49 | DM1 |

:	NUd	de Bypass							Roxhill			BH01
				0 17	Grour	nd Level:		N	National Grid Co-ordinate:	Sheet:		
134	583	End:			Cioui	119.7	n	'	E:475141.6 N:252265.6	oneet.	-	of 4
		s & Testing			anical I				E.470141.014.202200.0	0		Materi
No	Туре	Results	TCR (%)	SCR (%)	RQD (%) (I	Backfill Instru- mentatio	Water		Description of Strata	Reduced Level	Depth (Thick ness)	
12	SPT	N:50 for 20mr	93	85	81			MUD space partly (POS (strate previo	STONE with horizontal closely ed planar smooth and rough tight to open fractures. SIBLE RUTLAND FORMATION) tum copied from 17.45m from bous sheet)	- - - - - - - -	- - - - - - - - -	
17 18	C D PID	0.0ppm	55	20	20			19.30)m bgl.	- - - - - - -	-	
19	С		49 •	26	16					- - - - -	(5.75)	
13	SPT	N:50 for 40mn	n 59	5 6	56			d	lark grey from 21.00m bgl.	-	- - - - - - - - - - - - - -	
					X					- - - - - - - - - - - - - - - - - - -		
20 21	D PID C	0.0ppm	85	82	41			horizo plana fractu	ontal close to medium spaced ir smooth partly open clean ires.	- - - - - - -	(1.60)	
14 22	D			95	88			silty ı bgl.	mudstone from 24.30m to 24.45m	94.90	24.80	
	PID	0.0ppm	100	97	93			vertic mediu rough shell (POS	al to sub-horizontal closely to um spaced planar smooth and n tight to partly open fractures with fragments. SIBLE RUTLAND FORMATION)			
	12 17 18 19 13 20 21 14 22	 SPT C D PID SPT SPT SPT SPT SPT SPT SPT 	12 SPT N:50 for 20mm 17 C D 18 D 0.0ppm 19 C 4 13 SPT N:50 for 40mm 20 D 0.0ppm 21 C 4 22 D 0.0ppm 24 SPT N:50 for 20mm 25 D 0.0ppm	12 SPT N:50 for 20mm 93 17 C 93 17 C 55 18 D 0.0ppm 19 C 49 13 SPT N:50 for 40mm 20 D 0.0ppm 21 C 85 21 C 100 22 D 0.0ppm 24 SPT N:50 for 20mm 25 100 100 100 100	12 SPT N:50 for 20mm 93 85 93 85 93 85 17 C D PID 0.0ppm 19 C 13 SPT N:50 for 40mm 19 C 13 SPT N:50 for 40mm 10 59 56 14 SPT N:50 for 20mm 10 95 10 95 10 95	12 SPT N:50 for 20mm 93 85 81 17 C 0.0ppm 55 20 20 18 D 0.0ppm 49 26 16 19 C 49 26 16 13 SPT N:50 for 40mm 59 56 56 20 D 0.0ppm 49 26 16 13 SPT N:50 for 40mm 59 56 56 20 D 0.0ppm 85 82 41 21 C N:50 for 20mm 100 95 88 22 D PID 0.0ppm 100 95 88 14 SPT N:50 for 20mm 100 95 88 100 97 93 100 95 88	12 SPT N:50 for 20mm 93 85 81 17 C 0.0ppm 55 20 20 18 D 0.0ppm 49 26 16 19 C 49 26 16 13 SPT N:50 for 40mm 59 56 56 13 SPT N:50 for 20mm 85 82 41 14 SPT N:50 for 20mm 100 95 88 20 D 0.0ppm 100 95 88 14 SPT N:50 for 20mm 100 95 88 100 97 93 100 97 93 100 97 93 100 97 93	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12 SPT N:50 for 20mm 93 85 81 MuD 93 85 81 93 85 81 Plot 93 17 C 55 20 20 19 19 0.0ppm 93 85 81 19 19 0.0ppm 49 26 16 19 19 19 10 19 10	12 SPT N:50 for 20mm Image: strong to strong to strong to strong grey silly MUDSTONE with horizontal close to medium spaced planar smooth and rough tight to party open fractures. 17 C 55 20 20 18 D 0.0ppm Image: strong to strong grey silly spaced planar smooth and rough tight to party open fractures. 19 C 55 20 20 19 C Image: strong grey time strong to strong grey sity mudstone from 24.30m to 24.45m togging model to sub-horizontal close to medium spaced planar smooth and rough tight to party open fractures. 20 D D D 21 C Image: strong grey sity MUDSTONE with horizontal close to sub-horizontal close to medium strong to strong grey sity mudstone from 24.30m to 24.45m togging model to sub-horizontal close to medium spaced planar smooth part or out shell to sub-horizontal close to medium spaced planar smooth and rough tight to party open fr	12 SPT N:50 for 20mm Image: strain of the strain of	12 SPT N:50 for 20mm Medium strong to strong grey silty 93 85 81 93 85 81 93 85 81 93 85 81 93 85 81 94 9 61 97 55 20 20 17 C 55 20 20 18 D 0.0ppm 55 20 20 19 C 49 26 16 dark grey from 19.30m to 19.70m 13 SPT N:50 for 40mm 59 56 56 13 SPT N:50 for 20mm dark grey from 21.00m bgl. dark grey from 21.00m bgl. 14 SPT N:50 for 20mm band of medium strong to strong sity mudstore from 24.30m to 24.45m 20 D 0.0ppm 100 95 88 100 95 88 dark grey from 26.00m bgl. dark grey from 24.00m bgl. 21 C band of medium strong to strong sity mudstore from 24.30m to 24.45m dark grey from 26.00m bgl.

Boring Progress and Water Observations **General Remarks** Borehole Diameter (mm) Borehole Casing Water Date Time Depth Depth Depth All dimensions in metres 1:50 Scale: Checked Logged By: Drilled Method Plant AGS Used: **Rotary Cored** Used: Comacchio GEO 205 By: DSUK LTD RSalama By:

Contract:		Ros	ide Bypass				C	lient:			Roxhill	Boreho		BH01
Contract R	of	NUC	Start:		0 17	Grou	und I	ovol			National Grid Co-ordinate:	Sheet:		
		500										Sheet.		. 4
	515	583	End:			-		119.			E:475141.6 N:252265.6		4	of 4
Depth		Sampl	es & Testing		Mech	anical	Log	fill &	ation		Dependentions of Objects	vel	Depth	Mater Graph
(m)	No	туре	Results	TCR (%)	SCR (%)	anical RQD (%)	lf (mm	nst Back	wentatio Water		Description of Strata	Reduced Level	(Thick ness)	Leger
27.00-28.5 27.00-27.3	32 15		N:50 for 170mm	63	61	61				med roug shel (PO (stra	ical to sub-horizontal closely to lium spaced planar smooth and gh tight to partly open fractures with l fragments. SSIBLE RUTLAND FORMATION) atum copied from 24.80m from	-	(5.30)	
28.15-28.5	50 23	С								prev	vious sheet)		-	
28.50-30.0	20			-X	X	X	-					-		
20.00 00.0				70	59	55						-	- - - - - - - - -	
				V	V	V						89.60	-20 10	
30.00-30.1	10 16	SPT	N:50 for 85mm	ר						E	Borehole terminated at 30.10m bgl.	- 09.00	- 30.10	
	oring	Progreg	ss and Water Ob	serva	tions							-		
		Bo	ehole Casing	Bore	hole	Wate	er				General Remarks			
Date	Tim		epth Depth	Diam	eter	Dept								

Depth Depth Depth (mm) 1:50 All dimensions in metres Scale: Checked Rv Method Logged By: Drilled AGS Plant Used: **Rotary Cored** Used: Comacchio GEO 205 By: DSUK LTD RSalama By:

Contract:		_					Cli	ient:				Boreho		
		Roa	de Bypass			-					Roxhill			BH02
Contract Re			Start:			Grour			_		National Grid Co-ordinate:	Sheet:		
3	3135			18.0				21.4	-		E:475077.5 N:252210.1		1	of 4
Depth (m)	No	Sample Type	s & Testing Results	TCR	/lecha SCR	anical L RQD (%) (_og If	ackfill & Instru- entation	Water		Description of Strata	Reduced Level	Depth (Thick ness)	Materia Graphic Legenc
0.70 0.70 1.00-1.45 1.20 1.20	1 1 2	D PID SPT ES PID	0.0ppm N=7 0.0ppm	(%)	(%)	(70) (<u>.mm</u>			oran grav Grav to c with boul (GL/	h to stiff grey mottled brown red hge silty slightly sandy slightly velly CLAY. Sand is fine to coarse. vel is subangular to subrounded fine coarse quartzite, flint and limestone occasional limestone cobbles and lders. ACIAL TILL/POSSIBLE MADE DUND)		(1.80)	
1.70 1.70 2.00-2.45 2.70	3 2 4	D PID SPT D	0.0ppm N=16							sand fine subr and cobb	n to stiff brown orange silty slightly dy slightly gravelly CLAY. Sand is to coarse. Gravel is subangular to rounded fine to coarse quartzite, flint limestone with frequent limestone bles.	<u>119.65</u>	(1.40)	
_2.70 _2.70 _ 3.00-3.45	26	PID UT	0.0ppm 100% recovery	r						GRC Firm	ACIAL TILL/POSSIBLE MADE OUND) n to stiff grey mottled brown red nge silty slightly sandy slightly	 _118.25	-	
- 3.70 _3.70	5	D PID	0.0ppm							grav Grav subr and	velly CLAY. Sand is fine to coarse.	<u>117.55</u>	(0.70) 3.90 (0.90)	
4.70-5.15	3	SPT	N=16							to 4.	OUND) dark grey mottled brown from 3.70m .80m bgl. n to stiff brown orange silty slightly	116.65		
_4.70 _4.70 	6 4 7	D PID SPT D	0.0ppm N=29							sand fine subr and cobb (GL/	dy slightly gravelly CLAY. Sand is to coarse. Gravel is subangular to rounded fine to coarse quartzite, flint limestone with frequent limestone	- - - - - - - - - -	- (1.90)	
5.70 6.70-6.82 6.70 6.70 6.70 7.00 7.00	5 8 9	PID SPT D PID D PID	0.0ppm N:50 for 70mm 0.0ppm 0.0ppm							sligh San suba quar frequ (GL/	n light grey mottled brown orange silty htly sandy slightly gravelly CLAY. d is fine to coarse. Gravel is angular to subrounded, fine to coarse rtzite, flint and limestone with uent limestone cobbles. ACIAL TILL) . light grey mottled brown between Om to 5.10m bgl.	- - - - - - - - - - - - - - - - - - -	- - - - -	
8.50-10.00 8.50-8.95	6	SPT	N=44	A 23	13	A 0				Stiff lime (WE LIMI	in to 5-rom bg. grey CLAY with thin bands of stone. SATHERED BLISWORTH ESTONE FORMATION) cription on next sheet	- - - - - - - - - - - - - - - - - - -	(1.80) 	

E	Boring Pro	ogress and	Water Ob	servations	6			0.	امتعما			
Date	Time	Borehole	Casing	Borehole Diameter	Water			Ge	nerai	Remarks		
Bato	11110	Depth	Depth	(mm)	Depth	1 1 000	ation sca	unned with CE	D prior to	breaking group	nd. No services	
14/09/17		11.50	10.00	300	11.30		ountered		it phot to	bieaking gioui		
15/09/17		24.00	10.00	123	21.40			spection pit tp	1.20m b	al.		
18/09/17		30.00	10.00	123	21.30	3. Gro minu 4. Gas	undwate	r encountered	l at 25.20	m bgl and rose t	to 23.60m after 20 0.00m bgl upon	
						A	II dimen	sions in metre	es	Scale:	1:50	
Method Used:	Rota	ry Cored	Plan Use		icchio GEC	0 205	Drilled By:	DSUK LTD	Logged By:	RSalama	Checked Ry:	AGS

Contract:							Client	t:				Boreho	ole:	
		Roa	de Bypass								Roxhill			BH02
Contract Ref	:		Start:	15.09	9.17	Grou	ind Leve	el:			National Grid Co-ordinate:	Sheet:		
3	13	583	End:	18.09	9.17		121	1.45			E:475077.5 N:252210.1		2	of 4
		Sample	s & Testing	Ν	Aecha	anical	Log 🛓	u- tion	er			ced	Depth	Materia
Depth (m)	No	Туре	Results	TCR (%)	SCR (%)	RQD (%)	Log & If (mm)	menta	Water		Description of Strata	Reduced Level	(Thick ness)	
				23	13	0				(WE LIMI (stra	silty CLAY with limestone cobbles. ATHERED BLISWORTH ESTONE FORMATION) <i>tum copied from 8.50m from</i> <i>ious sheet</i>)		(1.60)	
10.00-11.50 10.00-10.45	7	SPT	N=44	Ť		Å				L (BLI	emely weak grey silty MUDSTONE. SWORTH LIMESTONE	<u>111.35</u> 111.05	_	
10.60	10	D PID	0.0ppm	 100 	92	80				Stro (BLI	ng to very strong silty LIMESTONE. SWORTH LIMESTONE RMATION)	-	-(1.10)	
11.15-11.50	11	С									. band of firm grey silty clay from 0m to 11.16m bgl.	109.95	11.50	
11.50-13.00 11.50-11.58		SPT	N:50 for 45mm							suba	grey silty gravelly CLAY. Gravel is angular fine to coarse limestone with zontal to vertical close to medium	109.75	11.70	
12.00 12.27-12.54	12	PID C	0.0ppm	97	79	75				(BLI FOF	ced planar smooth clean fractures. SWORTH LIMESTONE RMATION)	- - - -	-	
13.00-14.50 13.50-13.55 13.50	13	D PID	0.0ppm	93	78	68				with close clea (BLI FOF	ng to very strong grey LIMESTONE horizontal to subhorizontal with e to medium spaced planar smooth n fractures. SWORTH LIMESTONE RMATION) . mottled brown from 12.10m to 00m bgl. . mottled brown from 13.00m to	- - - - - - - - - - - - -		
13.57-13.77		С		T T	Y						0m bgl.	-	- (4.50) 	
14.50-16.00 14.50-14.56		SPT	N:50 for 30mm									-	- - - -	
15.70	15	D		82	81	68					band of very stiff clay from 15.60m	-	-	
15.70 15.70 16.00-17.50 16.00-16.20		PID C	0.0ppm	X	X					Wea	ak dark grey silty MUDSTONE with	- -105.25	- 16.20	
				91	80	79				fract (BLI FOF	ely spaced vertical partly open clean ture. SWORTH LIMESTONE RMATION) / strong to Extremely strong grey silty	-104.85 - - - -	- <u>16.60</u> - -	
17.50-19.00 17.50-17.60		SPT	N:50 for 50mm	93	85	X 81				LIMI horiz (BLI	ESTONE with medium space zontal tight fractures. SWORTH LIMESTONE RMATION)	- - - - - -	 (2.05)	

	Boring Pro	ogress and	Water Ob		S			Go	noral	Remarks			
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth			Ge	lielai	Remains			
		Deptit	Берш	(mm)	Deptit								
Method						A	II dimen	sions in metre	es	Scale:	1:50		
Method Used:	Rota	ry Cored	Plan Use		acchio GEC	205	Drilled By:	DSUK LTD	Logged By:	RSalama	Checked By:	TMB	AGS

GINT_LIBRARY_V8_06.GLB LibVersion: v8_06_018 PrjVersion: v8_06 - Core+Logs - 002 | Log COMPOSITE LOG - A4P | 313583 - ROADE BYPASS.GPJ - v8_06. RSK Environment Ltd, Abbey Park, Humber Road, Coventry, CV3 4AQ. Tel: 02476 505600, Fax: 02476 501417, Web: www.rsk.co.uk, | 10/11/17 - 14:49 | DM1 |

Contract:		Road	de Bypass					ent:		Roxhill	Boreho		BH0
Contract Ref	·.	TOd	Start:	15.00	9 17	Grou	nd L	evel:		National Grid Co-ordinate:	Sheet:		
	13	583	End:					21.4	5	E:475077.5 N:252210.1	eneet.	3	of 4
J			s & Testing			anical I				E.470077.0 N.202210.1	þ	1	Mate
Depth (m)	No	Туре	Results	TCR (%)	SCR (%)	RQD	lf (mm)	Backfill & Instru- mentation	Water	Description of Strata	Reduced Level	Depth (Thick ness)	
18.50-18.60	17	С		93	85	81	()				-102.80	- 18.65	
19.00-20.00 19.00 19.00	18	D PID	0.0ppm	55	20	20				Extremely to very weak dark grey silty MUDSTONE with closely spaced horizontal - subhorizontal tight to party open clean and clay infilled fractures. (POSSIBLE RUTLAND FORMATION) mottled blue from 19.00m bgl.	-	- - - - - - - -	
20.00-21.00 20.00-20.23		SPT	N:50 for 95mm	49	26	16					- - - - - - -	- - - - - - - -	
21.00-22.50				X							- - - - - - -	(5.35)	
22.17-22.40	19	С		59	56	56					- - - - -	- - - - -	
22.50-24.00 22.50-22.53		SPT	N:50 for 20mm							band of stiff clay from 22.50, to 22.60m bgl.	-	-	
23.00 23.00	20	D PID	0.0ppm	 85 	 82 	41			Ţ			-	
24.00-25.50				_	X	X				band of very stiff clay from 23.60m to 23.80m bgl. Extremely strong grey silty LIMESTONE	97.45	24.00	
25.05-25.70	21	С		100	95	88			Ţ	with horizontal to subhorizontal close to medium spaced planar smooth clean fractures. (POSSIBLE RUTLAND FORMATION)	- - - - - - - -	(1.40)	
25.50-27.00 25.50-25.54 25.50 25.50 25.50		SPT D PID	N:50 for 20mm 0.0ppm	100	97	93				Weak to strong grey MUDSTONE with medium spaced horizontal planar smooth partly open to open clean fractures. (POSSIBLE RUTLAND FORMATION) band of soft silty clay from 25.50m to 25.60m bgl.	96.05	25.40	
26.77-27.00		С								č	-	- - -	

â	_i F	Boring Pro	ogress and	Water Ob	servations	3			\mathbf{C}	noral	Domorko			
5	Date	Time	Borehole	Casing	Borehole Diameter	Water			Gei	lierai	Remarks			
2			Depth	Depth	(mm)	Depth								
Ľ,				í '										
y - a				í '										
222				1										
, ,				í '										
				1										
5				í '			A	II dimens	sions in metre	s	Scale:	1:50		
1	Method	_		Plant				Drilled		Logged		Checked	THE	
j,	Used:	Rotar	ry Cored	Usec	ປ: Coma	acchio GEO	205	By:	DSUK LTD	By:	RSalama	By:	m	AGS

GINT LIBRARY_V8_06. GLB LibVersion: v8_06_018 PrjVersion: v8_06 - Core+Logs - 002 | Log COMPOSITE LOG - A4P | 313583 - ROADE BYPASS.GPJ - v8_06. RSK Environment Ltd, Abbey Park, Humber Road, Coventry, CV3 4AQ. Tel: 02476 505600, Fax: 02476 501417, Web: www.rsk.co.uk, | 10/11/17 - 14:49 | DM1 |

1:50

Checked By:

AGS

Scale:

RSalama

Logged By:

Contract:		Road	le Bypass				CI	ient:			Roxhill	Boreho		BH02
Contract Re			Start:		9.17	Grou	ind L	evel:			National Grid Co-ordinate:	Sheet:		
;	3135	583	End:					21.4	5		E:475077.5 N:252210.1		4	of 4
	5	Samples	s & Testing	Ν	Mecha	anical						ed ed	Depth	Materia
Depth (m)	No	Туре	Results	TCR (%)	SCR (%)	RQD (%)	lf (mm) Backfill & Instru- mentation	Water		Description of Strata	Reduced Level	(Thick ness)	Graph Legen
28.30 28.30 28.50-30.0 28.50-28.7 29.10-29.44	24	D PID SPT C	0.0ppm N:50 for 160mm							med parti (PO (<i>stra</i> prev bgl.	ak to strong grey MUDSTONE with ium spaced horizontal planar smooth y open to open clean fractures. SSIBLE RUTLAND FORMATION) itum copied from 25.40m from ious sheet) . dark grey from 27.00m to 28.20m mottled blue from 29.20m to 29.80m forehole terminated at 30.00m bgl.	91.45	(4.60)	
Во	ring P		and Water Ob			•					General Remarks			
Date	Time	Borel Dep	-	Boreh Diame (mn	eter	Wate Dept								

All dimensions in metres

DSUK LTD

Drilled

By:

Method

Used:

Plant

Used:

Comacchio GEO 205

Rotary Cored

Contract:		Poa	de Bypass				Clie	ent:			Roxhill	Boreho		BH03
Contract Re	۰f۰	Noa	Start:	12 00	a 17	Grour	ndle	ovel.			National Grid Co-ordinate:	Sheet:		DIIUJ
		583	End:					19.6	n		E:474853.9 N:251919.4		1	of 2
```			s & Testing			anical L					E.474000.5 N.201515.4	D D	-	Materia
Depth (m)	No	Туре	Results	TCR (%)	SCR (%)	anical L RQD (%) (lf (mm)	Backfill & Instru- mentation	Water		Description of Strata	Reduced Level	Depth (Thick ness)	
							<u> </u>			sano rooti subr	ss over dark brown slightly gravelly dy CLAY with frequent roots and lets. Gravel is angular to rounded fine to coarse quartzite. PSOIL)	- - - - - -	0.30	
1.00-1.45 1.00 1.00 1.50	1 1 2	SPT D PID D	N=43 0.0ppm							sligh to s fragi	n orange brown slightly gravelly htly sandy CLAY. Gravel is angular subrounded fine to coarse chalk ments, quartzite and flint. ACIAL TILL)	-	(2.70)	
2.00	3	D PID	0.0ppm									-	-	
- 3.00-3.32 3.00 3.00	2 4	SPT D PID	N:50 for 170mm 0.0ppm							sligh to s flint	n dark brown grey slightly sandy ntly gravelly CLAY. Gravel is angular subrounded fine to coarse quartzite, and chalk. ACIAL TILL)	- <u>116.60</u> - - - -	3.00	
4.00 4.00	5	D PID	0.0ppm									115.10	- 4 50	
4.50-6.00	3	SPT	N=43	37	8	7				sligh coar subr LIMI (WE	rounded medium coarse ESTONE. EATHERED BLISWORTH			
-5.90 5.90 6.00-7.50	6	D PID	0.0ppm	_ X	_	X					ESTONE FORMATION)	-	(2.60)	
6.00-6.45	4	SPT	N=45	45	33	33						112.50	7.10	
7.50-9.00	5	SPT	N:50 for 30mm		-X -			·	₹ Į	LIMI spac plan fract (BLI	ng dark grey fine grained silty ESTONE with close to medium ced horizontal to vertical stepped and nar, rough and smooth clean tures. ISWORTH LIMESTONE RMATION)			
8.20 8.20 8.35-8.60	7 8	D PID C	0.0ppm	89	69	48				bgl.	 with shell inclusions from 7.60m bgl. beige brown from 7.90m to 8.20m beige brown from 8.40m to 9.10m 	- - - - -		

ad, -	E	Boring Pro	ogress and	Water Ob	servations	6			0.0	moral	Domorko		
ber Road,	Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth			Ge	nerai	Remarks		
nent Ltd, Abbey Park, Hum	12/09/17 13/09/17 13/09/17		3.00 3.00 15.00	4.50 4.50 9.00	(mm) 123 123 123	Dry 2.60 13.60	enco 2. Han 3. Grou 4. Gas	ountered d dug in: undwate	spection pit tp r encountered	1.20m bg I at 8.00m			
iron							A	ll dimen	sions in metre	es	Scale:	1:50	
RSK En	Method Used:	Rota	ry Cored	Plan Use		icchio GEC	205	Drilled By:	DSUK LTD	Logged By:	RSalama	Checked By:	AGS

GINT LIBRARY_V8_06. GLB LibVersion: v8_06_018 PrjVersion: v8_06 - Core+Logs - 002 | Log COMPOSITE LOG - A4P | 313583 - ROADE BYPASS.GPJ - v8_06. RSK Environment Ltd, Abbey Park, Humber Road, Coventry, CV3 4AQ. Tel: 02476 505600, Fax: 02476 501417, Web: www.rsk.co.uk | 10/11/17 - 14:49 | DM1 |

Contract:			Road	de Bypa	66				С	lie	nt:		Roxhill Borehole:
Contract F	?≏t.		Noa			12.0	0 17	Grou	Ind		vel.		National Grid Co-ordinate: Sheet:
Contract			83					Giu			9.6	•	
	<u> </u>				a:	13.0							
Depth (m)			Туре	s & Testing Results	;	TCR (%)	SCR	anical RQD (%)	LOG If		sackriii o Instru- nentatioi	Water	Description of Strata
9.00-10.5 9.00-9.03		6	SPT	N:50 for 20	mm	▲	56	45					Strong dark grey fine grained silty LIMESTONE with close to medium spaced horizontal to vertical stepped and planar, rough and smooth clean fractures. (BLISWORTH LIMESTONE FORMATION) (stratum copied from 7.10m from previous sheet)
10.50-12. 10.50-10.		7	SPT	N:50 for 125mm			X		-				stiff clay with sandstone gravels from 9.00m to 9.10m bgl. beige brown from 9.20m to 9.40m bgl. beige brown from 9.60m to 10.00m
11.15-11. 11.15	25	9	D PID	0.0ppm		91	59	52		• • • • • • •			bgl. beige brown from 11.20m to 13.00m bgl.
12.00-13. 12.00-12. 12.13-12.	11	8 10	SPT C	N:50 for 70	mm	87	67	53	-	• • • • • • • • • •			
13.50-15. 13.50-13. 13.50 13.50 14.02-14.	54	9 11	SPT PID C	N:50 for 30 0.0ppm		93	72	65	-				Extremely strong dark grey silty MUDSTONE. (RUTLAND FORMATION) band of stiff clay from 13.50m to 13.60m bgl.
-14.90 15.00-15. 15.00		12 10	D SPT PID	N:50 for 36 0.0ppm		¥	¥	V	_	0 0 0 0			band of stiff clay with horizontal closely spaced planar smooth clean and clay infilled fractures from 14.600m to 14.65m bgl. Borehole termianted at 15.05m bgl.
R	orir	na P	rogress	s and Water	Oh	serva	lione						
Date	Boring Progress and Water Observations te Time Borehole Casing Diameter Diameter (mm) D												General Remarks

All dimensions in metres

DSUK LTD

Drilled

By:

Plant

Used:

Comacchio GEO 205

Rotary Cored

GINT LIBRARY_V8_06.GLB LibVersion: v8_06_018 PrjVersion: v8_06 - Core+Logs - 002 | Log COMPOSITE LOG - A4P | 313583 - ROADE BYPASS.GPJ - v8_06. RSK Environment Ltd, Abbey Park, Humber Road, Coventry, CV3 4ÃQ. Tel: 02476 505600, Fax: 02476 501417, Web: www.rsk.co.uk | 10/11/17 - 14:49 | DM1 |

Method

Used:

Checked By: RSalama

Scale:

Logged By:

1:50

Contract:		Roa	de Bypass				CI	ient:			Roxhill	Boreho		BH04
Contract Re	۰. f·	Noa	Start:	11 0	0 17	Grou	und I	مريا.			National Grid Co-ordinate:	Sheet:		
	313:	583		13.0				15.			E:474793.0 N:251226.6	oncer.	1	of 3
•	-		es & Testing			anical					L.474755.0 N.251220.0	្ត រូប្ត		
Depth (m)	No		Results		SCR	anical RQD (%)	lf (mm	Backfill Instru-	<u>mentatio</u> Water		Description of Strata	Reduced Level	Depth (Thick ness)	Materia Graphic Legenc
-										san roo sub (TC	ss over dark brown slightly gravelly dy CLAY with frequent roots and lets. Gravel is angular to rounded fine to coarse quartzite PSOIL)	115.41	0.30	
1.00-1.45 1.00 1.00	1 1	SPT D PID	N=6 0.0ppm							san sub qua	n orange brown slightly gravelly dy CLAY. Gravel is angular to rounded fine to coarse chalk, rtzite and flint. ACIAL TILL)	- - - - - -	- - - - - - -	
2.00-2.45 2.00 2.00	2 2	SPT D PID	N=11 0.0ppm									-	- (3.70) - (3.70)	
3.00-3.45 3.00 3.00	3 3	SPT D PID	N=24 0.0ppm									- - - - - - -	- - - - - - - - - - -	
4.00-5.00 4.00-4.31 4.00 4.00 4.50	4 4 5	SPT D PID D	N:50 for 160mm 0.0ppm	90	17	12				san sub qua (GL	n orange brown slightly gravelly dy CLAY. Gravel is angular to rounded fine to coarse chalk, rtzite and flint. ACIAL TILL)	<u>111.71</u> 111.61	4.00	
5.00-6.50 5.00-5.41 5.00	5	SPT PID	N:50 for 255mm 0.0ppm	87	40	35				bro occ Ext deg smo	dium strong to strong yellow orange wn fine grained LIMESTONE with an asional clayey matrix. Fractures are remely widely spaced dipping 25 - 45 rees planar occasionally stepped both and clean. No staining noted on tures.	-	- - - - - - - - - - - - - - - - - - -	
6.50-8.00										(WI LIM	EATHERED BLISWORTH ESTONE FORMATION) weak from 5.50m to 5.90m bgl.		(4.20)	
6.50-6.59	6	SPT	N:50 for 60mm	85	64	53			• • • • • • • • • • • • • • • • • • •			- - - - - - -	- - - - - -	
8.00-9.50 8.00-8.30	6	С		X					• • • • • • • • • • • •		shell inclusions from 7.80m bgl.	- - - 107.41	8.30	
8.00-8.03 8.00	7		N:50 for 20mm 0.0ppm	91	79	79			。。。 。。。 。。。 。。。	gra incl	dium strong to strong dark grey fine ned LIMESTONE with shell usions. EATHERED BLUE LIAS	- 107.01	8.70	

ad,	E	Boring Pro	gress and	Water O	bservations	3				noral	Domorko		
Humber Road,	Date	Time	Borehole	Casing	Borehole Diameter	Water			Ge	nerai	Remarks		
qui	Date	TIME	Depth	Depth	(mm)	Depth	1 1 000	ation sca	nned with CP	P prior to	breaking ground		
Ĕ,	11/09/17		15.50	11.00	123	14.90		ountered			breaking ground	I. INU SEIVICES	
Park,	12/09/17		15.50	11.00	123	14.10			spection pit tp	1.20m bo	gl.		
Abbey	12/09/17		20.00	11.00	123	19.30			not encounte				
Ab.							4. Bore	ehole bad	ckfilled with ar	risings up	on completion.		
t Ltā													
men													
Environment							A	II dimen	sions in metre	es	Scale:	1:50	
RSK En	Method Used:	Rota	ry Cored	Plai Use		cchio GEO	205	Drilled By:	DSUK LTD	Logged By:	MSouthworth	Checked By:	AGS
ΝŘ	0000.		,	000				<i></i> ,.					

GINT LIBRARY_V8_06. GLB LibVersion: v8_06_018 PrjVersion: v8_06 - Core+Logs - 002 | Log COMPOSITE LOG - A4P | 313583 - ROADE BYPASS.GPJ - v8_06. RSK Environment Ltd, Abbey Park, Humber Road, Coventry, CV3 4AQ. Tel: 02476 505600, Fax: 02476 501417, Web: www.rsk.co.uk, | 10/11/17 - 14:49 | DM1 |

Contract:		Road	de Bypass				CI	ient:		Roxhill	Boreho		BH04
Contract Ref	f:	1.00	Start:	11 0	9.17	Grou	Ind I	evel:		National Grid Co-ordinate:	Sheet:		2110-
		583	End:					15.7	1	E:474793.0 N:251226.6		-	of 3
			es & Testing			anical						Depth	Mater
Depth (m)	No		Results		SCR	RQD (%)	lf (mm	Backfill & Instru- mentation	Water	Description of Strata	Reduced Level	(Thick ness)	
9.50-11.00 9.50 9.50-9.55 9.50	7 8	D SPT PID	N:50 for 30mm 0.0ppm		79 X	79	X			FORMATION) (BLISWORTH LIMESTONE FORMATION) Medium strong to strong yellow orang brown fine grained LIMESTONE with a occasional clayey matrix. Fractures an 35 to 45 degrees stepped smooth clea with occasional fractures infilled wit	106.21 	(0.50)	
11.00-12.50 11.00-11.05		SPT	N:50 for 40mm	85	73	68				clay. No staining identified upot fractures. (BLISWORTH LIMESTONE FORMATION) (stratum copied from 8.70m from previous sheet) shell inclusions from 9.40m bgl.		-	
12.00-12.35	8	С		68	53	53				Stiff to very stiff dark grey silty CLAY with occasional pockets of orange brown silt. (RUTLAND FORMATION) Strong light grey fine grainer MUDSTONE. Fractures are 25 to 3 degrees planar and stepped smoot		- (3.30) - - -	
12.50-14.00 12.50-12.95		SPT	N=44	47	36	36				occasionally rough very wide and clean. (RUTLAND FORMATION) pocket of dark grey silty clay from 10.90m to 10.95m bgl. no recovery from 12.50m to 13.10m bgl. Very stiff dark blue grey silty structure	102.41	- - - - - - - - - - - - - - - - - - -	×
14.00-15.50 14.00 14.00-14.39 14.00	9	D SPT PID	N:50 for 241mm 0.0ppm	68	61	55				CLAY with frequent mudstom lithorelicts. Fractures are 35 to 45 plana smooth occasionally rough wide to Extremely wide and clean. (RUTLAND FORMATION)	· - 	(2.70)	
15.50-17.00 15.50-15.95		SPT	N=47	-	X	X					- 99.71	16.00	
16.10-16.20	10	С		93	77	77				Strong light grey fine grained MUDSTONE. Fractures are 25 to 3 planar smooth wide to Extremely wide and clean. (RUTLAND FORMATION)		-	
17.00-18.50 17.00-17.05		SPT	N:50 for 40mm	95	72	53						-(2.10)	

pad, C	E	Boring Pro	ogress and	Water Ol	oservations	6			Co	noral	Remarks		
Humber Road,	Date	Time	Borehole	Casing	Borehole Diameter	Water			Ge	nerai	Remarks		
g	Duic	TIME	Depth	Depth	(mm)	Depth							
Par													
Abbey Park,													
Ltd, Al													
Environment											I		
jio 🗌							Α	II dimen	sions in metre	s	Scale:	1:50	
	lethod			Plar	nt			Drilled		Logged		Checked n 2	
tấn luận the second se	sed:	Rota	ry Cored	Use	d: Coma	cchio GEC	205	By:	DSUK LTD	By:	MSouthworth	By: MO	AGS

GINT_LIBRARY_V8_06.GLB LibVersion: v8_06_018 PrjVersion: v8_06 - Core+Logs - 002 | Log COMPOSITE LOG - A4P | 313583 - ROADE BYPASS.GPJ - v8_06. RSK Environment Ltd, Abbey Park, Humber Road, Coventry, CV3 4AQ. Tel: 02476 505600, Fax: 02476 501417, Web: www.rsk.co.uk | 10/11/17 - 14:49 | DM1 |

Contract:		Roa	de Bypass				Client:			Roxhill	Boreho		BH04
Contract Re	∽f∙	Noa			9 17	Grou	nd Level:			National Grid Co-ordinate:	Sheet:		DIIV
	313	593		13.09			115.7 ⁻	1		E:474793.0 N:251226.6	Oneet.	3	of 3
			es & Testing	1		anical				L.4/4/35.0 N.25/220.0	0		
Depth (m)		Туре	Results	TCR	SCR	RQD (%)	Instru- Instru- mentation	Water		Description of Strata	Reduced Level	Depth (Thick ness)	Materi Graph Legen
18.50-20.0 18.50 18.50-18.7 18.50	11	D SPT PID	N:50 for 160mm	95	72	53	· · ·		graii to 3 wide	ium strong to strong dark grey fine ned MUDSTONE. Fractures are 25 5 planar smooth wide to Extremely and open. TLAND FORMATION)		18.10	
			0.0ppm	100	80	80					- - -	(2.35)	
19.50-19.9		С				V			bgl.	. becoming light grey from 19.50m	- - -	-	
20.00-20.1	0 15	SPT	N:50 for 60mm								95.26	20.45	
											- - - - - - - - - - - - - -	- - - - - - - - - -	
												- - - - - - - - -	
							[t	<u> </u>	
D -	oring F	Progress	s and Water Ob	servat	tions								
BC										General Remarks			
Date	Time	Bore	hole Casing	Boreh Diame		Wate	r			Ocheral Kernarks			

1:50 All dimensions in metres Scale: Checked By: Drilled Logged By: Method Plant AGS DSUK LTD Used: **Rotary Cored** Used: Comacchio GEO 205 By: **MSouthworth**

Contract:		Poa	de Bypass				Clie	ent:			Roxhill	Boreho		BH05
Contract Re	f	NUa	Start:	07.0	0 17	Grou	ndle	avel.			National Grid Co-ordinate:	Sheet:		БПОЗ
	313:	583		08.0				01.7	6		E:475105.8 N:250762.3	Oneet.	1	of 3
•	1		es & Testing	1		anical I					E.475105.0 N.250702.5	0	-	1
Depth (m)	No		Results		SCR	RQD	lf (mm)	Backfill Instru- nentatic	Water		Description of Strata	Reduced Level	Depth (Thick ness)	Materia Graphi Legen
-										CLA suba flint,	vn silty slightly sandy slightly gravelly Y. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse quartzite and limestone. PSOIL)	101.46	0.30	
1.00-1.45 1.00 1.30 1.30 1.70 2.00-2.45	1 1 2 2	SPT PID ES PID D SPT	N=30 0.0ppm 0.0ppm N=22							Soft orar grav Grav to co (GL	to firm light grey mottled brown lige silty slightly sandy slightly velly CLAY. Sand is fine to coarse. vel is subangular to subrounded fine barse quartzite, flint and limestone. ACIAL TILL) stiff from 1.20m bgl.		(2.70)	
2.70 2.70 3.00-3.45 3.70	3 3	D PID SPT D	0.0ppm N=27							sligh coar	v stiff grey mottled orange red silty tly sandy CLAY. Sand is fine to 'se. ACIAL TILL)	98.76	3.00	
_3.70 _4.00-5.50		PID	0.0ppm	-						- Stiff	brown red silty slightly sandy CLAY.	97.76	4.00	× ·× -
4.50-4.60 4.50-4.60 4.50 	4 6 5	SPT D PID C	N:50 for 210mm 0.0ppm	97	63	33				(WE LIMI Stro med plan fillec (BLI	ATHERED BLISWORTH ESTONE FORMATION) ng orange LIMESTONE with close to lium spaced horizontal to vertical ar smooth tight partly open gravel d clean fractures. SWORTH LIMESTONE RMATION)		(2.40)	
5.50-7.00 5.50-5.54	6	SPT	N:50 for 30mm		X	X					mottled light grey from 4.30m bgl.	-	-	
				64	59	13						95.26	6.50	
7.00-8.50	7	SPT	N=37							mud	a grey silty CLAY with gravel sized Istone lithorelicts. TLAND FORMATION)		- -(1.10)	
- - - -				85	76	64		• • •	. 1		emely weak dark grey black DSTONE. TLAND FORMATION)	- 94.16 - -	7.60 (0.90)	
									• ≚ •			93.26	8.50	
8.50-10.00 8.50-8.95 8.80-9.00	8 7	SPT C	N=42	▲ 27	▲ 24	▲ 22			∎	No r	ecovery from 8.50m to 9.50m bgl.	-	-	ZCL

ad,	E	Boring Pro	gress and	Water Ob	oservations	3			Ca	noral	Domorko	
Humber Road,	Date	Time	Borehole	Casing	Borehole Diameter	Water			Ge	nerai	Remarks	
qui	Date	TITLE	Depth	Depth	(mm)	Depth	1 1 000	tion con	nnod with CB	D prior to	breaking groun	d No convisoo
	07/09/17		14.00	11.50	N/R	Dry	1	untered.		R prior to	bleaking groun	u. NO Services
Park,	07/09/17		20.00	11.50	N/R	14.30			pection pit tp			
Abbey									encountered		i bgl. ell installed to 12	00m halunan
Ltd, At								pletion.	unuwater mor	intoring we		
בי דו												
Environment									· · · ·			4.50
viro							P	li dimens	sions in metre	es	Scale:	1:50
	Method	D -4-	0	Plan				Drilled		Logged	D0 -1	
RSK	Used:	Rota	ry Cored	Use	a: Coma	cchio GEC	205	By:	DSUK LTD	By:	RSalama	By: AGS

GINT_LIBRARY_V8_06.GLB LibVersion: v8_06_018 PrjVersion: v8_06 - Core+Logs - 002 | Log COMPOSITE LOG - A4P | 313583 - ROADE BYPASS.GPJ - v8_06. RSK Environment Ltd, Abbey Park, Humber Road, Coventry, CV3 4AQ. Tel: 02476 505600, Fax: 02476 501417, Web: www.rsk.co.uk, | 10/11/17 - 14:49 | DM1 |

Contract:		Road	le Bypass				Cli	ient:			Roxhill	Boreho		BH05
Contract Ref	f:	nout	Start:		9 17	Grou	Ind L	evel:			National Grid Co-ordinate:	Sheet:		21100
	13	583	End:					01.7	6		E:475105.8 N:250762.3		2	of 3
		Samples	s & Testing	N	Mecha	anical	Log	A - ion	ž			e d	Depth	Materia
Depth (m)	No	Туре	Results	TCR (%)	SCR (%)	RQD (%)	lf (mm	Backfill & Instru-	Water		Description of Strata	Reduced Level	(Thick ness)	Graphic Legend
9.40-9.50	8	D		27	24	22				(stra	ecovery from 8.50m to 9.50m bgl. htum copied from 8.50m from ious sheet)	92.16	(1.10) 9.60	ZCL
9.40		PID	0.0ppm		V					MUE	emely weak dark grey black DSTONE. TLAND FORMATION) //	91.76	10.00	
10.00-10.45	9	SPT	N=28							Grey (RU	y silty slightly clayey SAND. TLAND FORMATION) AMFORD MEMBER)	- - - - -	-(1.50)	
11.50-12.50											ak grey silty MUDSTONE.		- - - 11.50 - 11.55⁄	
11.50-11.95	10	SPT	N=42	70							TLĂND FORMATION) / stiff dark grey silty CLAY.		(0.55) 12.10	[× ×
				70	55	10					TLAND FORMATION)	09.00	12.10	— ×—
12.30-12.40 12.50-14.00 12.50-12.95		C SPT	N=43		.	X				with med smo	horizontal to subhorizontal close to ium spaced planar and stepped oth and rough tight to open clean clay infilled fractures.	- - - -	-	
				76	52	39				(RU	TLÁND FORMATION)	- - - -	- - - -	
13.70-16.50 _13.70 14.00-15.50 14.00-14.45		D PID SPT	0.0ppm N=42		X						. band of frim grey silty clay from 5m to 14.03m bgl.	- - - -	-	
-				87	67	58						-	- (4.90) 	
15.50-17.00		0.57									. band of soft to firm grey silty clay 15.00m to 15.20m bgl.	- - - -	-	
15.50-15.95	13	SPT	N=46	100	87	62					. band of soft to firm grey silty clay 16.10m to 16.30m bgl.	- - - - - -	- - - - - -	
17.00-18.50 17.00-17.39		SPT	N:50 for 235mm	100	68	54				size ∖(RU	v stiff grey silty CLAY with gravel d MUDSTONE lithorelicts. TLAND FORMATION)	84.76 84.46	- 17.00 - 17.30	x

oad, c	E	Boring Pro	gress and	Water Ob	servations	s			Co	noral	Domorko			
E R	Date	Time	Borehole		Borehole Diameter	Water			Ge	nerai	Remarks			
En			Depth	Depth	(mm)	Depth								
Σ Υ														
гаг														
pey														
Ę,														
nen														
							ŀ	All dimen	sions in metre	es	Scale:	1:50		
	Method Used:	Rota	ry Cored	Plan Use		acchio GEC	0 205	Drilled By:	DSUK LTD	Logged By:	RSalama	Checke By:	TAB	AGS

GINT_LIBRARY_V8_06.GLB LibVersion: v8_06_018 PrjVersion: v8_06 - Core+Logs - 002 | Log COMPOSITE LOG - A4P | 313583 - ROADE BYPASS.GPJ - v8_06. RSK Environment Ltd, Abbey Park, Humber Road, Coventry, CV3 4AQ. Tel: 02476 505600, Fax: 02476 501417, Web: www.rsk.co.uk, | 10/11/17 - 14:49 | DM1 |

								Client:				Boreh	ole:	
		Road	de B	ypass							Roxhill			BH05
Contract Ref	:			Start:	07.0	9.17	Grou	nd Level:			National Grid Co-ordinate:	Sheet:		
3	135	583		End:	08.0	9.17		101.7	' 6		E:475105.8 N:250762.		3	of 3
Depth (m)	s No	Sample Type		esting esults	TCR (%)	Aecha SCR (%)	anical I RQD (%) (lf [lnstru- mentation	Water		Description of Strata	Reduced Level	Depth (Thick ness)	
- 18.50-20.00 18.50-18.94	15	SPT		:50 for 85mm	100	68	54			spa clos (RL <i>(str</i> pre	ak grey silty MUDSTONE with clos iced, subhorizontal, planar smo sed fractures. JTLAND FORMATION) atum copied from 17.30m fr vious sheet)	ely oth	(1.70)	
- - - -					60	20	9			Sof (RL	t grey silty CLAY. JTLAND FORMATION)		(0.70)	
20.00-20.45	16	SPT	1	N=47		.	.			with smo frac	remely weak grey silty MUDSTO n closely to medium spaced pla poth partly open to open cle stures horizontal to subhorizontal.	NE nar _ ean -	19.70 (0.75) 20.45	
											JTLAND FORMATION) Borehole terminated at 20.45m bgl.		- 20.43 	
	ng P īme	rogress Bore De	hole	Water Ob Casing	serval Boreh Diame	ole	Water	-			General Remark	S		

I	Boring Pro	ogress and	Water Ob	servations	3			0.0	noral	Domorko		
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth			Ge	nerai	Remarks		
			·									
										0.1	4.50	
						P	li dimens	ons in metre	es	Scale:	1:50	
Method Used:	Rota	ry Cored	Plan Use		cchio GEC	0 205	Drilled By:	DSUK LTD	Logged By:	RSalama	Checked By:	AGS

APPENDIX F GROUND GAS MONITORING DATA

[Pressures]	Previous	During	<u>Start</u>	<u>End</u>
Round 1 Round 2 Round 3 Round 4	- - -	Fluctuating Fluctuating Rising Fluctuating	1004 1001 1007 1002	1003 1003 1009 993

Weather: Cloudy + Ground: Wet + Wind: Light + Air Temp: 15DegC GA5000 + Dipmeter + Weather: Cloudy + Ground: Damp + Wind: Medium + Air Temp: 12DegC Weather: Clear + Ground: Dry + Wind: Light + Air Temp: 15DegC

Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH01	1	50	1	20.00		10.00 to 20.00	28/09/2017 09:05:00	1001	1001	-0.1 _(l)	-	-	-	-	-	-	-
BH01	1	50	1			10.00 to 20.00	30 secs	-	-	-0.1 _(SS)	-	-	-	-	-	-	-
BH01	1	50	1 (2)	20.00		10.00 to 20.00	28/09/2017 09:06:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
BH01	1	50	1 (2)			10.00 to 20.00	15 secs	-	-	-	-	0.1	0.0	21.0	0.0	1	0
BH01	1	50	1 (2)			10.00 to 20.00	30 secs	-	-	-	-	0.1	0.0	21.0	0.0	1	0
BH01	1	50	1 (2)			10.00 to 20.00	60 secs	-	-	-	-	0.1	0.0	21.0	0.0	1	0
BH01	1	50	1 (2)			10.00 to 20.00	90 secs	-	-	-	-	0.1	0.0	20.9	0.0	1	0
BH01	1	50	1 (2)			10.00 to 20.00	120 secs	-	-	-	-	0.1	0.0	21.0	0.0	1	0
BH01	1	50	1 (2)			10.00 to 20.00	180 secs	-	-	-	-	0.1	0.0	21.0	0.0	1	0
BH01	1	50	1 (2)			10.00 to 20.00	240 secs	-	-	-	-	0.1	0.0	21.0	0.0	1	0
BH01	1	50	1 (2)			10.00 to 20.00	300 secs	-	-	-	-	0.1	0.0	20.9	0.0	1	0
BH01	1	50	1 (3)	20.00	19.62	10.00 to 20.00	28/09/2017 09:12:00	-	-	-	16.53	-	-	-	-	-	-
BH01	1	50	2	20.00		10.00 to 20.00	05/10/2017 09:52:00	1001	999	0.0 _(I)	-	-	-	-	-	-	-
BH01	1	50	2			10.00 to 20.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
BH01	1	50	2 (2)	20.00		10.00 to 20.00	05/10/2017 09:53:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
BH01	1	50	2 (2)			10.00 to 20.00	15 secs	-	-	-	-	0.1	0.0	20.9	0.0	0	0
BH01	1	50	2 (2)			10.00 to 20.00	30 secs	-	-	-	-	0.1	0.0	20.9	0.0	0	0
BH01	1	50	2 (2)			10.00 to 20.00	60 secs	-	-	-	-	0.1	0.0	20.9	0.0	0	0
ey: I = Initial, F	P = Pea	ık, SS = St	eady State. No	ote: LEL = Lo	wer Explosiv	e Limit = 5% v/v.											
		Environ	ment Ltd		Compiled E	Зу	Date		Cheo	ked By			Date	Contra	act Ref:		
GK	A	Abbey F	Park		DStrews	s	26/10/17									31358	3
		umber F Coven CV3 4/	try	Contract:			Roade	Bypass	5					Page:		1 of	48

[Pressures] Previous During

End Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrog Sulphic (ppm)
BH01	1	50	2 (2)			10.00 to 20.00	90 secs	-	-	-	-	0.1	0.0	20.9	0.0	0	0
BH01	1	50	2 (2)			10.00 to 20.00	120 secs	-	-	-	-	0.1	0.0	20.9	0.0	0	0
BH01	1	50	2 (2)			10.00 to 20.00	180 secs	-	-	-	-	0.1	0.0	21.0	0.0	0	0
BH01	1	50	2 (2)			10.00 to 20.00	240 secs	-	-	-	-	0.1	0.0	21.0	0.0	0	0
BH01	1	50	2 (2)			10.00 to 20.00	300 secs	-	-	-	-	0.1	0.0	21.0	0.0	0	0
BH01	1	50	2 (3)	20.00	19.50	10.00 to 20.00	05/10/2017 09:59:00	-	-	-	17.17	-	-	-	-	-	-
BH01	1	50	3	20.00		10.00 to 20.00	13/10/2017 09:55:00	-	-	0.0 _(I)	-	-	-	-	-	-	-
BH01	1	50	3			10.00 to 20.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
BH01	1	50	3 (2)	20.00		10.00 to 20.00	13/10/2017 09:56:00	-	-	-	-	0.1	0.0	20.9	-	0	0
BH01	1	50	3 (2)			10.00 to 20.00	60 secs	-	-	-	-	0.1	0.0	20.9	-	0	0
BH01	1	50	3 (2)			10.00 to 20.00	90 secs	-	-	-	-	0.1	0.0	20.9	-	0	0
BH01	1	50	3 (2)			10.00 to 20.00	120 secs	-	-	-	-	0.1	0.0	20.9	-	0	0
BH01	1	50	3 (2)			10.00 to 20.00	150 secs	-	-	-	-	0.1	0.0	20.9	-	0	0
BH01	1	50	3 (2)			10.00 to 20.00	240 secs	-	-	-	-	0.1	0.0	20.9	-	0	0
BH01	1	50	3 (2)			10.00 to 20.00	255 secs	-	-	-	-	0.1	0.0	20.9	-	0	0
BH01	1	50	3 (2)			10.00 to 20.00	270 secs	-	-	-	-	0.1	0.0	20.9	-	0	0
BH01	1	50	3 (3)	20.00	19.50	10.00 to 20.00	13/10/2017 10:00:45	-	-	-	17.37	-	-	-	-	-	-
BH01	1	50	4	20.00		10.00 to 20.00	19/10/2017 10:21:00	-	-	0.2 _(I)	_	-	-	-	-	-	-

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

<u>Start</u>

	RSK Environment Ltd	Compiled By	Date	Checked By	Date	Contract Ref:			
DCK	Abbey Park	Mostrewije	26/10/17				31358	3	
	Humber Road	Contract:				Page:			
	Coventry CV3 4AQ		Roade	Bypass		2	of	48	AGS

[Pressures] Previous During

<u>Start</u>

<u>End</u>

Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH01	1	50	4			10.00 to 20.00	15 secs	-	-	0.1 _(SS)	-	-	-	-	-	-	-
BH01	1	50	4 (2)	20.00		10.00 to 20.00	19/10/2017 10:21:30	-	-	-	-	0.1	0.0	20.9	-	0	0
BH01	1	50	4 (2)			10.00 to 20.00	30 secs	-	-	-	-	0.2	0.0	20.7	-	0	0
BH01	1	50	4 (2)			10.00 to 20.00	90 secs	-	-	-	-	0.1	0.0	20.7	-	0	0
BH01	1	50	4 (2)			10.00 to 20.00	120 secs	-	-	-	-	0.1	0.0	20.8	-	0	0
BH01	1	50	4 (2)			10.00 to 20.00	150 secs	-	-	-	-	0.1	0.0	20.8	-	0	0
BH01	1	50	4 (2)			10.00 to 20.00	180 secs	-	-	-	-	0.1	0.0	20.8	-	0	0
BH01	1	50	4 (2)			10.00 to 20.00	210 secs	-	-	-	-	0.1	0.0	20.8	-	0	0
BH01	1	50	4 (2)			10.00 to 20.00	270 secs	-	-	-	-	0.1	0.0	20.8	-	0	0
BH01	1	50	4 (2)			10.00 to 20.00	330 secs	-	-	-	-	0.1	0.0	20.8	-	0	0
BH01	1	50	4 (3)	20.00	19.50	10.00 to 20.00	19/10/2017 10:32:00	-	-	-	17.45	-	-	-	-	-	-
BH02	1	50	1	30.00		20.00 to 30.00	28/09/2017	1003	1003	0.0 _(I)	-	-	-	-	-	-	-
BH02	1	50	1			20.00 to 30.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
BH02	1	50	1 (2)	30.00		20.00 to 30.00	28/09/2017 00:01:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
BH02	1	50	1 (2)			20.00 to 30.00	15 secs	-	-	-	-	0.2	0.0	20.6	0.0	1	0
BH02	1	50	1 (2)			20.00 to 30.00	30 secs	-	-	-	-	0.1	0.0	20.4	0.0	1	0
BH02	1	50	1 (2)			20.00 to 30.00	60 secs	-	-	-	-	0.1	0.0	20.4	0.0	2	0
ey: I = Initial, P	= Peal	k, SS = Ste	eady State. No	ote: LEL = Lo	wer Explosive	e Limit = 5% v/v.											
			- + + -!		Compiled B	Sy	Date		Chec	ked By			Date	Contra	act Ref:		
R R	A	bbey F		n	Distreaky		26/10/17									31358	3
		mber F		Contract:	-	I. I.						I		Page:			
		Covent CV3 44					Roade	Bypass								3 of	48 A

[Pressures] Previous During

<u>Start</u>

End Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH02	1	50	1 (2)			20.00 to 30.00	90 secs	-	-	-	-	0.1	0.0	20.3	0.0	2	0
BH02	1	50	1 (2)			20.00 to 30.00	120 secs	-	-	-	-	0.1	0.0	20.3	0.0	2	0
BH02	1	50	1 (2)			20.00 to 30.00	180 secs	-	-	-	-	0.1	0.0	20.2	0.0	2	0
BH02	1	50	1 (2)			20.00 to 30.00	240 secs	-	-	-	-	0.1	0.0	20.2	0.0	2	0
BH02	1	50	1 (2)			20.00 to 30.00	300 secs	-	-	-	-	0.1	0.0	20.1	0.0	2	0
BH02	1	50	1 (3)	30.00	29.10	20.00 to 30.00	28/09/2017 00:07:00	-	-	-	20.21	-	-	-	-	-	-
BH02	1	50	2	30.00		20.00 to 30.00	05/10/2017 09:00:00	1003	1003	0.0 _(l)	-	-	-	-	-	-	-
BH02	1	50	2			20.00 to 30.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
BH02	1	50	2 (2)	30.00		20.00 to 30.00	05/10/2017 09:01:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
BH02	1	50	2 (2)			20.00 to 30.00	15 secs	-	-	-	-	0.1	0.0	20.6	0.0	1	0
BH02	1	50	2 (2)			20.00 to 30.00	30 secs	-	-	-	-	0.1	0.0	20.4	0.0	1	0
BH02	1	50	2 (2)			20.00 to 30.00	60 secs	-	-	-	-	0.1	0.0	20.4	0.0	1	0
BH02	1	50	2 (2)			20.00 to 30.00	90 secs	-	-	-	-	0.1	0.0	20.4	0.0	1	0
BH02	1	50	2 (2)			20.00 to 30.00	120 secs	-	-	-	-	0.1	0.0	20.4	0.0	1	0
BH02	1	50	2 (2)			20.00 to 30.00	180 secs	-	-	-	-	0.1	0.0	20.3	0.0	1	0
BH02	1	50	2 (2)			20.00 to 30.00	240 secs	-	-	-	-	0.1	0.0	20.2	0.0	1	0
BH02	1	50	2 (2)			20.00 to 30.00	300 secs	-	-	-	-	0.1	0.0	20.2	0.0	1	0
BH02	1	50	2 (3)	30.00	29.02	20.00 to 30.00	05/10/2017 09:07:00	-	-	-	20.15	-	-	-	-	-	-
ey: I = Initial, P	= Peak	k, SS = Ste	eady State. No	ote: LEL = Lo	wer Explosiv	e Limit = 5% v/v.									tract Ref:		

	RSK Environment Ltd	Complied By	Date	Спескей Ву	Date				
DCK	Abbey Park	Mostreuxer	26/10/17				31358	3	
	Humber Road	Contract:				Page:			
	Coventry CV3 4AQ		Roade	Bypass		4	of	48	AGS

[Pressures] Previous During

Start

End Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH02	1	50	3	30.00		20.00 to 30.00	13/10/2017 09:45:00	1007	1007	0.1 _(l)	-	-	-	-	-	-	-
BH02	1	50	3			20.00 to 30.00	30 secs	-	-	0.1 _(SS)	-	-	-	-	-	-	-
BH02	1	50	3 (2)	30.00		20.00 to 30.00	13/10/2017 09:46:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
BH02	1	50	3 (2)			20.00 to 30.00	15 secs	-	-	-	-	0.4	0.0	19.5	0.0	1	0
BH02	1	50	3 (2)			20.00 to 30.00	30 secs	-	-	-	-	0.4	0.0	18.2	0.0	1	0
BH02	1	50	3 (2)			20.00 to 30.00	60 secs	-	-	-	-	0.4	0.0	18.4	0.0	1	0
BH02	1	50	3 (2)			20.00 to 30.00	93 secs	-	-	-	-	0.4	0.0	18.7	0.0	1	0
BH02	1	50	3 (2)			20.00 to 30.00	120 secs	-	-	-	-	0.4	0.0	18.8	0.0	1	0
BH02	1	50	3 (2)			20.00 to 30.00	180 secs	-	-	-	-	0.3	0.0	19.4	0.0	1	0
BH02	1	50	3 (2)			20.00 to 30.00	240 secs	-	-	-	-	0.2	0.0	19.7	0.0	1	0
BH02	1	50	3 (2)			20.00 to 30.00	300 secs	-	-	-	-	0.2	0.0	20.0	0.0	1	0
BH02	1	50	3 (3)	30.00	28.90	20.00 to 30.00	13/10/2017 09:52:00	-	-	-	20.15	-	-	-	-	-	-
BH02	1	50	4	30.00		20.00 to 30.00	19/10/2017 09:58:00	993	993	0.0 _(I)	-	-	-	-	-	-	-
BH02	1	50	4			20.00 to 30.00	15 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
BH02	1	50	4 (2)	30.00		20.00 to 30.00	19/10/2017 09:58:30	-	-	-	-	0.1	0.0	20.1	-	0	0
BH02	1	50	4 (2)			20.00 to 30.00	30 secs	-	-	-	-	0.3	0.0	19.7	-	0	0
BH02	1	50	4 (2)			20.00 to 30.00	60 secs	-	-	-	-	0.4	0.0	16.9	-	0	0
BH02	1	50	4 (2)			20.00 to 30.00	90 secs	-	-	-	-	0.3	0.0	16.8	-	0	0
ey: I = Initial, P	= Peal	k, SS = St	eady State. N	ote: LEL = Lo	wer Explosiv	e Limit = 5% v/v.											
D	פע ב	nviron	ment I td		Compiled E	By	Date		Cheo	ked By			Date	Cont	ract Ref:		

[Pressures] Previous During

End Equipment Used & Remarks

Start

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH02	1	50	4 (2)			20.00 to 30.00	120 secs	-	-	-	-	0.3	0.0	17.8	-	0	0
BH02	1	50	4 (2)			20.00 to 30.00	150 secs	-	-	-	-	0.3	0.0	18.0	-	0	0
BH02	1	50	4 (2)			20.00 to 30.00	210 secs	-	-	-	-	0.3	0.0	18.2	-	0	0
BH02	1	50	4 (2)			20.00 to 30.00	270 secs	-	-	-	-	0.3	0.0	18.5	-	0	0
BH02	1	50	4 (2)			20.00 to 30.00	330 secs	-	-	-	-	0.2	0.0	18.7	-	0	0
BH02	1	50	4 (3)	30.00	28.85	20.00 to 30.00	19/10/2017 10:07:00	-	-	-	20.12	-	-	-	-	-	-
BH03	1	50	1	15.00		8.00 to 15.00	28/09/2017 10:11:00	1004	1004	0.0 _(I)	-	-	-	-	-	-	-
BH03	1	50	1			8.00 to 15.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
BH03	1	50	1 (2)	15.00		8.00 to 15.00	28/09/2017 10:12:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
BH03	1	50	1 (2)			8.00 to 15.00	15 secs	-	-	-	-	0.2	0.0	20.2	0.0	10	0
BH03	1	50	1 (2)			8.00 to 15.00	30 secs	-	-	-	-	0.3	0.0	19.1	0.0	10	0
BH03	1	50	1 (2)			8.00 to 15.00	60 secs	-	-	-	-	0.3	0.0	19.0	0.0	10	0
BH03	1	50	1 (2)			8.00 to 15.00	90 secs	-	-	-	-	0.3	0.0	19.0	0.0	9	0
BH03	1	50	1 (2)			8.00 to 15.00	120 secs	-	-	-	-	0.3	0.0	19.0	0.0	9	0
BH03	1	50	1 (2)			8.00 to 15.00	180 secs	-	-	-	-	0.3	0.0	19.0	0.0	9	0
BH03	1	50	1 (2)			8.00 to 15.00	240 secs	-	-	-	-	0.3	0.0	19.0	0.0	9	0
BH03	1	50	1 (2)			8.00 to 15.00	300 secs	-	-	-	-	0.3	0.0	19.0	0.0	9	0
	1 = Peal			ote: LEL = Lo		8.00 to 15.00 e Limit = 5% v/v.	300 secs	-	-	-	_	0.3	0.0	19.0	0.0	9	0

Contract Ref: Compiled By Date Checked By Date RSK Environment Ltd Mostrauger 313583 Abbey Park Humber Road 26/10/17 Contract: Page: Coventry **Roade Bypass** 6 of 48 AGS CV3 4AQ

[Pressures] Previous During Start

Equipment Used & Remarks

<u>End</u>

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH03	1	50	1 (3)	15.00	14.34	8.00 to 15.00	28/09/2017 10:18:00	-	-	-	12.33	-	-	-	-	-	-
BH03	1	50	2	15.00		8.00 to 15.00	06/10/2017 10:41:00	1001	1001	0.0 _(I)	-	-	-	-	-	-	-
BH03	1	50	2			8.00 to 15.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
BH03	1	50	2 (2)	15.00		8.00 to 15.00	06/10/2017 10:42:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
BH03	1	50	2 (2)			8.00 to 15.00	15 secs	-	-	-	-	0.6	0.0	20.5	0.0	2	0
BH03	1	50	2 (2)			8.00 to 15.00	30 secs	-	-	-	-	0.6	0.0	20.2	0.0	2	0
BH03	1	50	2 (2)			8.00 to 15.00	60 secs	-	-	-	-	0.6	0.0	20.1	0.0	2	0
BH03	1	50	2 (2)			8.00 to 15.00	90 secs	-	-	-	-	0.6	0.0	20.1	0.0	2	0
BH03	1	50	2 (2)			8.00 to 15.00	120 secs	-	-	-	-	0.6	0.0	20.1	0.0	1	0
BH03	1	50	2 (2)			8.00 to 15.00	180 secs	-	-	-	-	0.6	0.0	20.0	0.0	1	0
BH03	1	50	2 (2)			8.00 to 15.00	240 secs	-	-	-	-	0.6	0.0	20.0	0.0	1	0
BH03	1	50	2 (2)			8.00 to 15.00	300 secs	-	-	-	-	0.6	0.0	20.0	0.0	1	0
BH03	1	50	2 (3)	15.00	14.25	8.00 to 15.00	06/10/2017 10:48:00	-	-	-	12.38	-	-	-	-	-	-
BH03	1	50	3	15.00		8.00 to 15.00	13/10/2017 10:25:00	-	-	0.0 _(I)	-	-	-	-	-	-	-
BH03	1	50	3			8.00 to 15.00	30 secs	-	-	0.1 _(SS)	-	-	-	-	-	-	-
BH03	1	50	3			8.00 to 15.00	60 secs	-	-	-	-	0.1	0.0	20.9	-	0	0
BH03	1	50	3			8.00 to 15.00	180 secs	-	-	-	-	0.2	0.0	20.8	-	0	0
BH03	1	50	3			8.00 to 15.00	210 secs	-	-	-	-	0.2	0.0	20.7	-	0	0
y: I = Initial, P	= Peal	k, SS = Ste	eady State. No	ote: LEL = Lo	wer Explosive	e Limit = 5% v/v.											
R	SKE	nviron	ment Ltd		Compiled B	Sy	Date		Chec	ked By			Date	Contra	act Ref:		
	-	bbey F		n	DStreaks	S	26/10/17									31358	3
				Contract:								I		Page:			
	Humber Road Contract: Coventry CV3 4AQ						Roade	Bypass								7 of	48

[Pressures] Previous During

End Equipment Used & Remarks

<u>Start</u>

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (I/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydroge Sulphide (ppm)
BH03	1	50	3			8.00 to 15.00	225 secs	-	-	-	-	0.2	0.0	20.7	-	0	0
BH03	1	50	3			8.00 to 15.00	240 secs	-	-	-	-	0.2	0.0	20.6	-	0	0
BH03	1	50	3			8.00 to 15.00	270 secs	-	-	-	-	0.2	0.0	20.6	-	0	0
BH03	1	50	3			8.00 to 15.00	300 secs	-	-	-	-	0.2	0.0	20.6	-	0	0
BH03	1	50	3			8.00 to 15.00	360 secs	-	-	-	-	0.3	0.0	20.5	-	0	0
BH03	1	50	3			8.00 to 15.00	420 secs	-	-	-	-	0.3	0.0	20.4	-	0	0
BH03	1	50	3			8.00 to 15.00	480 secs	-	-	-	-	0.1	0.0	20.6	-	0	0
BH03	1	50	3		14.30	8.00 to 15.00	540 secs	-	-	-	12.55	-	-	-	-	-	-
BH03	1	50	4	15.00		8.00 to 15.00	18/10/2017 10:29:00	1002	1002	0.0 _(I)	-	-	-	-	-	-	-
BH03	1	50	4			8.00 to 15.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
BH03	1	50	4 (2)	15.00		8.00 to 15.00	18/10/2017 10:30:00	-	-	-	-	0.1	0.0	20.9	-	0	0
BH03	1	50	4 (2)			8.00 to 15.00	60 secs	-	-	-	-	0.3	0.0	20.9	-	0	0
BH03	1	50	4 (2)			8.00 to 15.00	90 secs	-	-	-	-	0.3	0.0	20.8	-	0	0
BH03	1	50	4 (2)			8.00 to 15.00	105 secs	-	-	-	-	0.3	0.0	20.8	-	0	0
BH03	1	50	4 (2)			8.00 to 15.00	120 secs	-	-	-	-	0.3	0.0	20.8	-	0	0
BH03	1	50	4 (2)			8.00 to 15.00	150 secs	-	-	-	-	0.3	0.0	20.8	-	0	0
BH03	1	50	4 (2)			8.00 to 15.00	180 secs	-	-	-	-	0.3	0.0	20.8	-	0	0
BH03	1	50	4 (2)			8.00 to 15.00	240 secs	-	-	-	-	0.3	0.0	20.8	-	0	0

	RSK Environment Ltd	Compiled By	Date	Checked By	Date	Contract Ref:			
DCK	Abbey Park	Mostreukjer	26/10/17				3135	83	
	Humber Road	Contract:			•	Page:			
	Coventry CV3 4AQ		Roade	Bypass		8	of	48	AGS
									AUU

[Pressures] Previous During Start

Equipment Used & Remarks

<u>End</u>

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone		Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)		
BH03	1	50	4 (2)			8.00 to 15.00	300 secs	-	-	-	-	0.3	0.0	20.8	-	0	0		
BH03	1	50	4 (3)	15.00	14.25	8.00 to 15.00	18/10/2017 10:40:00	-	-	-	12.56	-	-	-	-	-	-		
BH04	1	50	1	11.00		7.00 to 11.00	28/09/2017 12:48:00	1004	1004	0.0(1)	-	-	-	-	-	-	-		
BH04	1	50	1			7.00 to 11.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-		
BH04	1	50	1 (2)	11.00		7.00 to 11.00	28/09/2017 12:49:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0		
BH04	1	50	1 (2)			7.00 to 11.00	15 secs	-	-	-	-	0.1	0.0	20.7	0.0	0	0		
BH04	1	50	1 (2)			7.00 to 11.00	30 secs	-	-	-	-	0.1	0.0	20.7	0.0	0	0		
BH04	1	50	1 (2)			7.00 to 11.00	60 secs	-	-	-	-	0.1	0.0	20.7	0.0	0	0		
BH04	1	50	1 (2)			7.00 to 11.00	90 secs	-	-	-	-	0.1	0.0	20.6	0.0	0	0		
BH04	1	50	1 (2)			7.00 to 11.00	120 secs	-	-	-	-	0.1	0.0	20.6	0.0	0	0		
BH04	1	50	1 (2)			7.00 to 11.00	180 secs	-	-	-	-	0.1	0.0	20.6	0.0	0	0		
BH04	1	50	1 (2)			7.00 to 11.00	240 secs	-	-	-	-	0.1	0.0	20.5	0.0	0	0		
BH04	1	50	1 (2)			7.00 to 11.00	300 secs	-	-	-	-	0.1	0.0	20.5	0.0	0	0		
BH04	1	50	1 (3)	11.00	11.00	7.00 to 11.00	28/09/2017 12:55:00	-	-	-	10.12	-	-	-	-	-	-		
BH04	1	50	2	11.00		7.00 to 11.00	06/10/2017 13:05:00	1003	1003	-0.1 _(I)	-	-	-	-	-	-	-		
BH04	1	50	2			7.00 to 11.00	30 secs	-	-	-0.1 _(SS)	-	-	-	-	-	-	-		
BH04	1	50	2 (2)	11.00		7.00 to 11.00	06/10/2017 13:06:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0		
y: I = Initial, F	= Peal	k, SS = Ste	eady State. No	ote: LEL = Lo	wer Explosive	e Limit = 5% v/v.													
D	CK ⊑	nviron	ment Ltd		Compiled B	8y	Date		Cheo	ked By			Date	Contra	act Ref:				
	A	bbey F	Park	M	DStreak	S	26/10/17									31358	3		
		imber F Covent CV3 44	try	Contract:	•		Roade	Bypass						Page:	313583 ^{age:} 9 of 4				

[Pressures] Previous During

<u>Start</u>

End Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydroger Sulphide (ppm)
BH04	1	50	2 (2)			7.00 to 11.00	15 secs	-	-	-	-	0.8	0.0	20.2	0.0	0	0
BH04	1	50	2 (2)			7.00 to 11.00	30 secs	-	-	-	-	0.8	0.0	20.1	0.0	0	0
BH04	1	50	2 (2)			7.00 to 11.00	60 secs	-	-	-	-	0.9	0.0	20.0	0.0	0	0
BH04	1	50	2 (2)			7.00 to 11.00	90 secs	-	-	-	-	0.9	0.0	20.0	0.0	0	0
BH04	1	50	2 (2)			7.00 to 11.00	120 secs	-	-	I	-	0.9	0.0	20.0	0.0	0	0
BH04	1	50	2 (2)			7.00 to 11.00	180 secs	-	-	I	-	0.9	0.0	20.0	0.0	0	0
BH04	1	50	2 (2)			7.00 to 11.00	240 secs	-	-	-	-	0.9	0.0	20.0	0.0	0	0
BH04	1	50	2 (2)			7.00 to 11.00	300 secs	-	-	-	-	0.9	0.0	20.0	0.0	0	0
BH04	1	50	2 (3)	11.00	10.87	7.00 to 11.00	06/10/2017 13:12:00	-	-	-	9.92	-	-	-	-	-	-
BH04	1	50	3	11.00		7.00 to 11.00	13/10/2017 12:37:00	1010	1010	0.0 _(I)	-	-	-	-	-	-	-
BH04	1	50	3			7.00 to 11.00	15 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
BH04	1	50	3 (2)	11.00		7.00 to 11.00	13/10/2017 12:37:30	-	-	I	-	0.1	0.0	20.9	-	0	0
BH04	1	50	3 (2)			7.00 to 11.00	30 secs	-	-	-	-	0.1	0.0	20.9	-	0	0
BH04	1	50	3 (2)			7.00 to 11.00	60 secs	-	-	-	-	0.1	0.0	20.9	-	0	0
BH04	1	50	3 (2)			7.00 to 11.00	90 secs	-	-	-	-	0.1	0.0	20.9	-	0	0
BH04	1	50	3 (2)			7.00 to 11.00	120 secs	-	-	-	-	0.1	0.0	20.9	-	0	0
BH04	1	50	3 (2)			7.00 to 11.00	150 secs	-	-	-	-	0.1	0.0	20.9	-	0	0
BH04	1	50	3 (2)			7.00 to 11.00	210 secs	-	-	-	-	0.1	0.0	20.9	-	0	0
				ote: LEL = Lo	wer Explosiv	e Limit = 5% v/v.	Date		Chec	ked By			Date	Contr	act Ref:		
R	-	nviron	ment Ltd	м	KLank		26/10/17									31358	3

RSK Environment Ltd	Complied By	Duic	Offeetted By	Dute				
Abbey Park	Mostreukjer	26/10/17				31358	3	
Humber Road	Contract:				Page:			
Coventry		Roade	Bypass		10	of	48	
CV3 4AQ								AGS

[Pressures] Previous During Start

End Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydroger Sulphide (ppm)
BH04	1	50	3 (2)			7.00 to 11.00	270 secs	-	-	-	-	0.1	0.0	20.9	-	0	0
BH04	1	50	3 (2)			7.00 to 11.00	330 secs	-	-	-	-	0.1	0.0	20.9	-	0	0
BH04	1	50	3 (2)			7.00 to 11.00	345 secs	-	-	-	-	0.1	0.0	20.9	-	0	0
BH04	1	50	3 (2)			7.00 to 11.00	360 secs	-	-	-	-	0.1	0.0	20.9	-	0	0
BH04	1	50	3 (2)			7.00 to 11.00	390 secs	-	-	-	-	0.1	0.0	20.9	-	0	0
BH04	1	50	3 (2)			7.00 to 11.00	450 secs	-	-	-	-	0.1	0.0	20.9	-	0	0
BH04	1	50	3 (2)			7.00 to 11.00	480 secs	-	-	-	-	0.1	0.0	20.9	-	0	0
BH04	1	50	3 (3)	11.00	9.44	7.00 to 11.00	13/10/2017 12:47:00	-	-	-	9.44	-	-	-	-	-	-
BH04	1	50	4	11.00		7.00 to 11.00	19/10/2017 12:27:00	993	993	0.0 _(I)	-	-	-	-	-	-	-
BH04	1	50	4			7.00 to 11.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
BH04	1	50	4 (2)	11.00		7.00 to 11.00	19/10/2017 12:28:00	-	-	-	-	0.1	0.0	20.9	-	0	0
BH04	1	50	4 (2)			7.00 to 11.00	60 secs	-	-	-	-	0.3	0.0	20.8	-	0	0
BH04	1	50	4 (2)			7.00 to 11.00	90 secs	-	-	-	-	0.3	0.0	20.6	-	0	0
BH04	1	50	4 (2)			7.00 to 11.00	105 secs	-	-	-	-	0.3	0.0	20.6	-	0	0
BH04	1	50	4 (2)			7.00 to 11.00	120 secs	-	-	-	-	0.3	0.0	20.6	-	0	0
BH04	1	50	4 (2)			7.00 to 11.00	150 secs	-	-	-	-	0.3	0.0	20.6	-	0	0
BH04	1	50	4 (2)			7.00 to 11.00	180 secs	-	-	-	-	0.3	0.0	20.6	-	0	0
BH04	1	50	4 (2)			7.00 to 11.00	240 secs	-	-	-	-	0.3	0.0	20.6	-	0	0
-			-	ote: LEL = Lo	wer Explosive Compiled B	e Limit = 5% v/v.	Date		Chec	ked By			Date	Contra	act Ref:		
R	RSK Environment Lt Abbey Park Humber Road				DStrews	, ,	26/10/17						2010			31358	3
		Imber F Covent CV3 4/	try	Contract:			Roade	Bypass						Page:	1	I 1 of	48

[Pressures] Previous During Start

Equipment Used & Remarks

<u>End</u>

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH04	1	50	4 (2)			7.00 to 11.00	300 secs	-	-	-	-	0.3	0.0	20.6	-	0	0
BH04	1	50	4 (3)	11.00	9.40	7.00 to 11.00	19/10/2017 12:36:00	-	-	-	9.40	-	-	-	-	-	-
BH05	1	50	1	12.00		8.00 to 12.00	28/09/2017	1008	1008	-0.1 _(l)		_	_	-	_	_	-
BH05	1	50	1			8.00 to 12.00	30 secs	-	-	-0.1 _(SS)	-	-	-	-	-	-	-
BH05	1	50	1 (2)	12.00		8.00 to 12.00	28/09/2017 00:01:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
BH05	1	50	1 (2)			8.00 to 12.00	15 secs	-	-	-	-	0.4	0.0	19.2	0.0	45	0
BH05	1	50	1 (2)			8.00 to 12.00	30 secs	-	-	-	-	0.4	0.0	18.3	0.0	61	0
BH05	1	50	1 (2)			8.00 to 12.00	60 secs	-	-	-	-	0.5	0.0	18.3	0.0	63	0
BH05	1	50	1 (2)			8.00 to 12.00	90 secs	-	-	-	-	0.5	0.0	18.3	0.0	63	0
BH05	1	50	1 (2)			8.00 to 12.00	120 secs	-	-	-	-	0.5	0.0	18.3	0.0	63	0
BH05	1	50	1 (2)			8.00 to 12.00	180 secs	-	-	-	-	0.5	0.0	18.3	0.0	63	0
BH05	1	50	1 (2)			8.00 to 12.00	240 secs	-	-	-	-	0.5	0.0	18.3	0.0	63	0
BH05	1	50	1 (2)			8.00 to 12.00	300 secs	-	-	-	-	0.5	0.0	18.3	0.0	63	0
BH05	1	50	1 (3)	12.00	9.78	8.00 to 12.00	28/09/2017 00:07:00	-	-	-	6.85	-	-	-	-	-	-
BH05	1	50	2	12.00		8.00 to 12.00	05/10/2017 12:55:00	1007	1008	-0.2 _(I)	-	-	-	-	-	-	-
BH05	1	50	2			8.00 to 12.00	30 secs	-	-	-0.2 _(SS)	-	-	-	-	-	-	-
BH05	1	50	2 (2)	12.00		8.00 to 12.00	05/10/2017 12:56:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
ey: I = Initial, F	P = Peal	k, SS = Ste	eady State. N	ote: LEL = Lo	wer Explosive	e Limit = 5% v/v.											
		nviron	montitd		Compiled B	y	Date		Cheo	cked By			Date	Contra	act Ref:		
	RSK Environment Ltd Abbey Park					e	26/10/17									31358	3
SN	Hu	mber F Covent CV3 44	Road try	Contract:			Roade	Bypass						Page:		12 of	48

[Pressures] Previous During

<u>Start</u>

End Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH05	1	50	2 (2)			8.00 to 12.00	15 secs	-	-	-	-	0.3	0.0	20.1	0.0	14	0
BH05	1	50	2 (2)			8.00 to 12.00	30 secs	-	-	-	-	0.4	0.0	19.3	0.0	18	0
BH05	1	50	2 (2)			8.00 to 12.00	60 secs	-	-	-	-	0.4	0.0	19.2	0.0	19	0
BH05	1	50	2 (2)			8.00 to 12.00	90 secs	-	-	-	-	0.4	0.0	19.2	0.0	19	0
BH05	1	50	2 (2)			8.00 to 12.00	120 secs	-	-	-	-	0.4	0.0	19.1	0.0	19	0
BH05	1	50	2 (2)			8.00 to 12.00	180 secs	-	-	-	-	0.4	0.0	19.1	0.0	19	0
BH05	1	50	2 (2)			8.00 to 12.00	240 secs	-	-	-	-	0.4	0.0	19.1	0.0	20	0
BH05	1	50	2 (2)			8.00 to 12.00	300 secs	-	-	-	-	0.4	0.0	19.1	0.0	20	0
BH05	1	50	2 (3)	12.00	9.78	8.00 to 12.00	05/10/2017 13:02:00	-	-	-	6.92	-	-	-	-	-	-
BH05	1	50	3	12.00		8.00 to 12.00	13/10/2017 11:05:00	1006	1007	-2.7 _(I)	-	-	-	-	-	-	-
BH05	1	50	3			8.00 to 12.00	240 secs	-	-	-0.2	-	-	-	-	-	-	-
BH05	1	50	3 (2)	12.00		8.00 to 12.00	13/10/2017 11:10:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
BH05	1	50	3 (2)			8.00 to 12.00	15 secs	-	-	-	-	0.3	0.0	20.5	0.0	4	0
BH05	1	50	3 (2)			8.00 to 12.00	30 secs	-	-	-	-	0.4	0.0	20.2	0.0	6	0
BH05	1	50	3 (2)			8.00 to 12.00	60 secs	-	-	-	-	0.5	0.0	20.0	0.0	7	0
BH05	1	50	3 (2)			8.00 to 12.00	90 secs	-	-	-	-	0.5	0.0	20.0	0.0	7	0
BH05	1	50	3 (2)			8.00 to 12.00	120 secs	-	-	-	-	0.5	0.0	20.0	0.0	7	0
BH05	1	50	3 (2)			8.00 to 12.00	180 secs	-	-	-	-	0.5	0.0	20.0	0.0	7	0
<u> </u>		,	,	ote: LEL = Lo	wer Explosiv	e Limit = 5% v/v.	Date		Chec	ked By			Date	Contr	act Ref:		
R		nviron	ment Ltd	м	Nel		26/40/47									31358	3

RSK Environment Ltd Abbey Park Humber Road Coventry CV3 4AQ MDStrawler 26/10/17 Date Ontract: Roade Bypass Page:

[Pressures] Previous During

<u>Start</u>

End Equipment Used & Remarks

Maritarian Reported Measured

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH05	1	50	3 (2)			8.00 to 12.00	240 secs	-	-	-	-	0.5	0.0	20.0	0.0	7	0
BH05	1	50	3 (2)			8.00 to 12.00	300 secs	-	-	-	-	0.5	0.0	20.0	0.0	7	0
BH05	1	50	3 (3)	12.00	9.84	8.00 to 12.00	13/10/2017 11:16:00	-	-	-	7.06	-	-	-	-	-	-
BH05	1	50	4	12.00		8.00 to 12.00	19/10/2017 11:46:00	1000	996	0.0 _(I)	-	-	-	-	-	-	-
BH05	1	50	4			8.00 to 12.00	15 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
BH05	1	50	4 (2)	12.00		8.00 to 12.00	19/10/2017 11:46:30	-	-	-	-	0.1	0.0	20.9	-	0	0
BH05	1	50	4 (2)			8.00 to 12.00	15 secs	-	-	-	-	0.5	0.0	20.5	-	4	0
BH05	1	50	4 (2)			8.00 to 12.00	30 secs	-	-	-	-	0.5	0.0	19.9	-	5	0
BH05	1	50	4 (2)			8.00 to 12.00	60 secs	-	-	-	-	0.5	0.0	19.9	-	6	0
BH05	1	50	4 (2)			8.00 to 12.00	90 secs	-	-	-	-	0.5	0.0	19.9	-	6	0
BH05	1	50	4 (2)			8.00 to 12.00	120 secs	-	-	-	-	0.5	0.0	19.9	-	6	0
BH05	1	50	4 (2)			8.00 to 12.00	150 secs	-	-	-	-	0.5	0.0	19.9	-	6	0
BH05	1	50	4 (2)			8.00 to 12.00	210 secs	-	-	-	-	0.5	0.0	19.9	-	6	0
BH05	1	50	4 (3)	12.00	9.80	8.00 to 12.00	19/10/2017 11:52:00	-	-	-	7.10	-	-	-	-	-	-
WS01	1	50	1	2.50		1.50 to 2.50	28/09/2017 09:24:00	1001	1001	0.0 _(l)	-	-	-	-	-	-	-
WS01	1	50	1			1.50 to 2.50	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS01	1	50	1 (2)	2.50		1.50 to 2.50	28/09/2017 09:25:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0

	RSK Environment Ltd	Compiled By	Date	Checked By	Date	Contract Ref:			
DCK	Abbey Park	MDStreukjer	26/10/17] ;	31358	3	
	Humber Road	Contract:			•	Page:			
	Coventry CV3 4AQ		Roade	Bypass		14	of	48	AGS

[Pressures] Previous During

<u>Start</u>

<u>End</u>

Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS01	1	50	1 (2)			1.50 to 2.50	15 secs	-	-	-	-	1.1	0.0	12.2	0.0	2	0
WS01	1	50	1 (2)			1.50 to 2.50	30 secs	-	-	-	-	1.0	0.0	10.6	0.0	2	0
WS01	1	50	1 (2)			1.50 to 2.50	60 secs	-	-	-	-	1.0	0.0	10.3	0.0	2	0
WS01	1	50	1 (2)			1.50 to 2.50	90 secs	-	-	-	-	1.0	0.0	10.2	0.0	2	0
WS01	1	50	1 (2)			1.50 to 2.50	120 secs	-	-	-	-	1.1	0.0	10.1	0.0	1	0
WS01	1	50	1 (2)			1.50 to 2.50	180 secs	-	-	-	-	1.1	0.0	10.1	0.0	1	0
WS01	1	50	1 (2)			1.50 to 2.50	240 secs	-	-	-	-	1.0	0.0	10.1	0.0	1	0
WS01	1	50	1 (2)			1.50 to 2.50	300 secs	-	-	-	-	1.0	0.0	10.1	0.0	1	0
WS01	1	50	1 (3)	2.50	2.48	1.50 to 2.50	28/09/2017 09:31:00	-	-	-	DRY	-	-	-	-	-	-
WS01	1	50	2	2.50		1.50 to 2.50	05/10/2017 07:30:00	1001	1001	0.0 _(l)	-	-	-	-	-	-	-
WS01	1	50	2			1.50 to 2.50	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS01	1	50	2 (2)	2.50		1.50 to 2.50	05/10/2017 07:31:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS01	1	50	2 (2)			1.50 to 2.50	15 secs	-	-	-	-	1.7	0.0	12.9	0.0	1	0
WS01	1	50	2 (2)			1.50 to 2.50	30 secs	-	-	-	-	1.7	0.0	5.1	0.0	1	0
WS01	1	50	2 (2)			1.50 to 2.50	60 secs	-	-	-	-	1.7	0.0	4.4	0.0	1	0
WS01	1	50	2 (2)			1.50 to 2.50	90 secs	-	-	-	-	1.7	0.0	4.3	0.0	0	0
WS01	1	50	2 (2)			1.50 to 2.50	120 secs	-	-	-	-	1.7	0.0	4.3	0.0	0	0
WS01	1	50	2 (2)			1.50 to 2.50	180 secs	-	-	-	-	1.7	0.0	4.3	0.0	0	0
ey: I = Initial, P	= Peak	k, SS = Ste	eady State. No	ote: LEL = Lo		e Limit = 5% v/v.										·	
R	SK E	Inviron	ment Ltd		Compiled B	ý	Date		Chec	ked By			Date	Contra	act Ref:		
	Abbey Park			M	Distreaky	S	26/10/17									31358	3
	Hu	imber F Covent CV3 44	Road try	Contract:			Roade	Bypass				I		Page:	•	I5 of	48

[Pressures] Previous During

<u>Start</u>

End Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydroger Sulphide (ppm)
WS01	1	50	2 (2)			1.50 to 2.50	240 secs	-	-	-	-	1.7	0.0	4.2	0.0	0	0
WS01	1	50	2 (2)			1.50 to 2.50	300 secs	-	-	-	-	1.7	0.0	4.2	0.0	0	0
WS01	1	50	2 (3)	2.50	2.48	1.50 to 2.50	05/10/2017 07:37:00	-	-	-	DRY	-	-	-	-	-	-
WS01	1	50	3	2.50		1.50 to 2.50	13/10/2017 10:00:00	1007	1007	0.2 _(I)	-	-	-	-	-	-	-
WS01	1	50	3			1.50 to 2.50	30 secs	-	-	0.2 _(SS)	-	-	-	-	-	-	-
WS01	1	50	3 (2)	2.50		1.50 to 2.50	13/10/2017 10:01:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS01	1	50	3 (2)			1.50 to 2.50	15 secs	-	-	-	-	1.7	0.0	13.1	0.0	0	0
WS01	1	50	3 (2)			1.50 to 2.50	30 secs	-	-	-	-	1.7	0.0	3.6	0.0	0	0
WS01	1	50	3 (2)			1.50 to 2.50	60 secs	-	-	-	-	1.7	0.0	3.0	0.0	0	0
WS01	1	50	3 (2)			1.50 to 2.50	90 secs	-	-	-	-	1.7	0.0	2.9	0.0	0	0
WS01	1	50	3 (2)			1.50 to 2.50	120 secs	-	-	-	-	1.7	0.0	2.9	0.0	0	0
WS01	1	50	3 (2)			1.50 to 2.50	180 secs	-	-	-	-	1.7	0.0	2.9	0.0	0	0
WS01	1	50	3 (2)			1.50 to 2.50	240 secs	-	-	-	-	1.7	0.0	2.8	0.0	0	0
WS01	1	50	3 (2)			1.50 to 2.50	300 secs	-	-	-	-	1.7	0.0	2.8	0.0	0	0
WS01	1	50	3 (3)	2.50	2.48	1.50 to 2.50	13/10/2017 10:07:00	-	-	-	DRY	-	-	-	-	-	-
WS01	1	50	4	2.50		1.50 to 2.50	19/10/2017 10:38:00	-	-	0.1 _(I)	-	-	-	-	-	-	-
WS01	1	50	4			1.50 to 2.50	30 secs	-	-	0.1 _(SS)	-	-	-	-	-	-	-
WS01	1	50	4 (2)	2.50		1.50 to 2.50	19/10/2017 10:38:45	-	-	-	-	0.1	0.0	20.9	-	0	-
ey: I = Initial, P	= Peal	k, SS = St	eady State. No	ote: LEL = Lo	wer Explosiv	e Limit = 5% v/v.	Date			ked Bv			Date		act Ref:		

	RSK Environment Ltd	Compiled By	Date	Checked By	Date	Contract Ref:			
DCK	Abbey Park	Mostreukje	26/10/17			;	31358	3	
	Humber Road	Contract:				Page:			
	Coventry CV3 4AQ		Roade	Bypass		16	of	48	AGS

[Pressures] Previous During

<u>Start</u>

<u>End</u>

Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS01	1	50	4 (2)			1.50 to 2.50	15 secs	-	-	-	-	1.8	0.0	17.0	-	0	0
WS01	1	50	4 (2)			1.50 to 2.50	45 secs	-	-	-	-	1.7	0.0	5.8	-	0	0
WS01	1	50	4 (2)			1.50 to 2.50	75 secs	-	-	-	-	1.7	0.0	4.8	-	0	0
WS01	1	50	4 (2)			1.50 to 2.50	105 secs	-	-	-	-	1.7	0.0	4.5	-	0	0
WS01	1	50	4 (2)			1.50 to 2.50	135 secs	-	-	-	-	1.7	0.0	4.4	-	0	0
WS01	1	50	4 (2)			1.50 to 2.50	195 secs	-	-	-	-	1.7	0.0	4.1	-	0	0
WS01	1	50	4 (2)			1.50 to 2.50	255 secs	-	-	-	-	1.7	0.0	4.0	-	0	0
WS01	1	50	4 (2)			1.50 to 2.50	315 secs	-	-	-	-	1.7	0.0	3.9	-	0	0
WS01	1	50	4 (2)			1.50 to 2.50	375 secs	-	-	-	-	1.7	0.0	3.9	-	0	0
WS01	1	50	4 (3)	2.50	2.48	1.50 to 2.50	19/10/2017 10:48:00	-	-	-	DRY	-	-	-	-	-	-
WS02	1	50	1	5.00		3.00 to 5.00	02/09/2017 10:02:00	1004	1004	0.1 _(l)	-	-	-	-	_	-	-
WS02	1	50	1			3.00 to 5.00	30 secs	-	-	0.1 _(SS)	_	-	-	-	-	-	-
WS02	1	50	1 (2)	5.00		3.00 to 5.00	02/09/2017 10:03:00	-	-	-	_	0.0	0.0	20.9	0.0	0	0
WS02	1	50	1 (2)			3.00 to 5.00	15 secs	-	-	-	-	1.7	0.0	17.6	0.0	2	0
WS02	1	50	1 (2)			3.00 to 5.00	30 secs	-	-	-	-	1.6	0.0	15.8	0.0	2	0
WS02	1	50	1 (2)			3.00 to 5.00	60 secs	-	-	-	-	1.6	0.0	15.8	0.0	2	0
WS02	1	50	1 (2)			3.00 to 5.00	93 secs	-	-	-	-	1.6	0.0	15.8	0.0	2	0
ey: I = Initial, P	e Peal	k, SS = Ste	eady State. No	ote: LEL = Lo	wer Explosive	e Limit = 5% v/v.	1						I	11		1	I
D	2K E	nviron	nent Ltd		Compiled B	Зу	Date		Chec	ked By			Date	Contra	act Ref:		
SK	Abbey Park MDS					s	26/10/17									31358	3
		Imber F Covent CV3 4A	ry	Contract:			Roade	Bypass	;			·		Page:		17 of	48

AGS

[Pressures] Previous During

<u>Start</u>

<u>End</u>

Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS02	1	50	1 (2)			3.00 to 5.00	120 secs	-	-	-	-	1.6	0.0	15.8	0.0	2	0
WS02	1	50	1 (2)			3.00 to 5.00	180 secs	-	-	-	-	1.6	0.0	15.8	0.0	2	0
WS02	1	50	1 (2)			3.00 to 5.00	240 secs	-	-	-	-	1.6	0.0	15.8	0.0	2	0
WS02	1	50	1 (2)			3.00 to 5.00	300 secs	-	-	-	-	1.6	0.0	15.8	0.0	2	0
WS02	1	50	1 (3)	5.00	4.98	3.00 to 5.00	02/09/2017 10:09:00	-	-	-	1.18	-	-	-	-	-	-
WS02	1	50	2	5.00		3.00 to 5.00	05/10/2017 10:25:00	1018	1005	15.4 _(I)	-	-	-	-	-	-	-
WS02	1	50	2			3.00 to 5.00	420 secs	-	-	0.2 _(SS)	-	-	-	-	-	-	-
WS02	1	50	2 (2)	5.00		3.00 to 5.00	05/10/2017 10:33:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS02	1	50	2 (2)			3.00 to 5.00	15 secs	-	-	-	-	2.1	0.0	18.6	0.0	0	0
WS02	1	50	2 (2)			3.00 to 5.00	30 secs	-	-	-	-	2.1	0.0	17.7	0.0	0	0
WS02	1	50	2 (2)			3.00 to 5.00	60 secs	-	-	-	-	2.1	0.0	17.6	0.0	0	0
WS02	1	50	2 (2)			3.00 to 5.00	90 secs	-	-	-	-	2.1	0.0	17.6	0.0	0	0
WS02	1	50	2 (2)			3.00 to 5.00	120 secs	-	-	-	-	2.1	0.0	17.6	0.0	0	0
WS02	1	50	2 (2)			3.00 to 5.00	180 secs	-	-	-	-	2.1	0.0	17.6	0.0	0	0
WS02	1	50	2 (2)			3.00 to 5.00	240 secs	-	-	-	-	2.1	0.0	17.6	0.0	0	0
WS02	1	50	2 (2)			3.00 to 5.00	300 secs	-	-	-	-	2.1	0.0	17.6	0.0	0	0
WS02	1	50	2 (3)	5.00	5.00	3.00 to 5.00	05/10/2017 10:39:00	-	-	-	2.77	-	-	-	-	-	-
WS02	1	50	3	5.00		3.00 to 5.00	13/10/2017 10:18:00	1051	1009	18.2 _(I)	-	-	-	-	-	-	-
ey: I = Initial, F	P = Peal	k, SS = Ste	eady State. No	ote: LEL = Lo	wer Explosive	e Limit = 5% v/v.											
D	RSK Environment Ltd			Compiled B	y	Date		Cheo	cked By			Date	Contra	act Ref:			
				n	DStrewky	S	26/10/17									31358	3
	Hu	mber F Covent CV3 4/	Road try	Contract:	7		Roade	Bypass				I		Page:		18 of	48

GINT_LIBRARY_V8_06.GLB : E - GAS MON - STANDARD - 6B - A4L : 313583 - ROADE BYPASS.GPJ : 26/10/17 09:44 : MS4 :

[Pressures] Previous During

<u>Start</u>

<u>End</u>

Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS02	1	50	3			3.00 to 5.00	30 secs	-	-	0.3 _(SS)	-	-	-	-	-	-	-
WS02	1	50	3 (2)	5.00		3.00 to 5.00	13/10/2017 10:19:00	-	-	-	-	0.1	0.0	20.9	-	0	0
WS02	1	50	3 (2)			3.00 to 5.00	30 secs	-	-	-	-	1.9	0.0	20.1	-	1	0
WS02	1	50	3 (2)			3.00 to 5.00	60 secs	-	-	-	-	2.2	0.0	19.4	-	1	0
WS02	1	50	3 (2)			3.00 to 5.00	90 secs	-	-	-	-	2.2	0.0	17.5	-	1	0
WS02	1	50	3 (2)			3.00 to 5.00	105 secs	-	-	-	-	2.2	0.0	17.3	-	1	0
WS02	1	50	3 (2)			3.00 to 5.00	120 secs	-	-	-	-	2.2	0.0	17.3	-	1	0
WS02	1	50	3 (2)			3.00 to 5.00	150 secs	-	-	-	-	2.2	0.0	17.3	-	1	0
WS02	1	50	3 (2)			3.00 to 5.00	180 secs	-	-	-	-	2.1	0.0	17.4	-	1	0
WS02	1	50	3 (3)	5.00	4.98	3.00 to 5.00	13/10/2017 10:24:00	-	-	-	3.05	-	-	-	-	-	-
WS02	1	50	4	5.00		3.00 to 5.00	18/10/2017 10:12:00	1002	1002	17.8 _(I)	-	-	-	-	-	-	-
WS02	1	50	4			3.00 to 5.00	30 secs	-	-	0.2 _(SS)	-	-	-	-	-	-	-
WS02	1	50	4 (2)	5.00		3.00 to 5.00	18/10/2017 10:16:00	-	-	-	-	0.1	0.0	20.9	-	0	0
WS02	1	50	4 (2)			3.00 to 5.00	60 secs	-	-	-	-	2.2	0.0	20.1	-	0	0
WS02	1	50	4 (2)			3.00 to 5.00	90 secs	-	-	-	-	2.1	0.0	17.7	-	0	0
WS02	1	50	4 (2)			3.00 to 5.00	120 secs	-	-	-	-	2.1	0.0	17.3	-	0	0
WS02	1	50	4 (2)			3.00 to 5.00	150 secs	-	-	-	-	2.1	0.0	17.3	-	0	0
WS02	1	50	4 (2)			3.00 to 5.00	180 secs	-	-	-	-	2.1	0.0	17.3	-	0	0
ey: I = Initial, P	= Peal	k, SS = Ste	eady State. No	ote: LEL = Lo	wer Explosiv	e Limit = 5% v/v.											
П	פע ר	nviron	montite		Compiled E	Sy	Date		Chec	ked By			Date	Contra	act Ref:		
SK R					Distreaky	e	26/10/17									31358	3
		mber F		Contract:				_				•		Page:			
		Covent CV3 4A					Roade	Bypass							1	l 9 of	48 A

[Pressures] Previous During

<u>Start</u>

<u>End</u>

Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydroger Sulphide (ppm)
WS02	1	50	4 (2)			3.00 to 5.00	240 secs	-	-	-	-	2.1	0.0	17.3	-	0	0
WS02	1	50	4 (2)			3.00 to 5.00	300 secs	-	-	-	-	2.1	0.0	17.3	-	0	0
WS02	1	50	4 (2)			3.00 to 5.00	360 secs	-	-	-	-	2.1	0.0	17.3	-	0	0
WS02	1	50	4 (3)	5.00		3.00 to 5.00	18/10/2017 10:23:00	-	-	-	-	-	-	-	-	-	-
WS03	1	50	1	3.00		1.00 to 3.00	28/09/2017 12:37:00	1005	1005	0.0 _(I)	-	-	-	-	-	-	-
WS03	1	50	1			1.00 to 3.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS03	1	50	1 (2)	3.00		1.00 to 3.00	28/09/2017 12:38:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS03	1	50	1 (2)			1.00 to 3.00	15 secs	-	-	-	-	2.2	0.0	18.6	0.0	0	1
WS03	1	50	1 (2)			1.00 to 3.00	30 secs	-	-	-	-	2.1	0.0	18.2	0.0	0	1
WS03	1	50	1 (2)			1.00 to 3.00	60 secs	-	-	-	-	2.1	0.0	18.2	0.0	0	1
WS03	1	50	1 (2)			1.00 to 3.00	90 secs	-	-	-	-	2.1	0.0	18.2	0.0	0	1
WS03	1	50	1 (2)			1.00 to 3.00	120 secs	-	-	-	-	2.1	0.0	18.2	0.0	0	1
WS03	1	50	1 (2)			1.00 to 3.00	180 secs	-	-	-	-	2.1	0.0	18.2	0.0	0	1
WS03	1	50	1 (2)			1.00 to 3.00	240 secs	-	-	-	-	2.1	0.0	18.2	0.0	0	1
WS03	1	50	1 (2)			1.00 to 3.00	300 secs	-	-	-	-	2.1	0.0	18.2	0.0	0	1
WS03	1	50	1 (3)	3.00	3.00	1.00 to 3.00	28/09/2017 12:44:00	-	-	-	DRY	-	-	-	-	-	-
WS03	1	50	2	3.00		1.00 to 3.00	06/10/2017 12:30:00	1003	1003	0.3 _(I)	-	-	-	-	-	-	-
ey: I = Initial, F	P = Peal	k, SS = Ste	eady State. No	ote: LEL = Lo	wer Explosiv	e Limit = 5% v/v.											
F	SK F	nviron	ment Ltd		Compiled B	Sy	Date		Chec	ked By			Date	Contra	act Ref:		
	A	bbey P	Park	n	Distreaky	s	26/10/17									31358	3
		Imber F Covent CV3 4	try	Contract:			Roade	Bypass	i					Page:		20 of	48

[Pressures] Previous During

<u>Start</u>

<u>End</u>

Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone		Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS03	1	50	2			1.00 to 3.00	30 secs	-	-	0.3 _(SS)	-	-	-	-	-	-	-
WS03	1	50	2 (2)	3.00		1.00 to 3.00	06/10/2017 12:31:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS03	1	50	2 (2)			1.00 to 3.00	15 secs	-	-	-	-	2.4	0.0	19.3	0.0	0	0
WS03	1	50	2 (2)			1.00 to 3.00	30 secs	-	-	-	-	2.3	0.0	18.8	0.0	0	0
WS03	1	50	2 (2)			1.00 to 3.00	60 secs	-	-	-	-	2.2	0.0	18.7	0.0	0	0
WS03	1	50	2 (2)			1.00 to 3.00	90 secs	-	-	-	-	2.2	0.0	18.7	0.0	0	0
WS03	1	50	2 (2)			1.00 to 3.00	120 secs	-	-	-	-	2.2	0.0	18.7	0.0	0	0
WS03	1	50	2 (2)			1.00 to 3.00	180 secs	-	-	-	-	2.2	0.0	18.7	0.0	0	0
WS03	1	50	2 (2)			1.00 to 3.00	240 secs	-	-	-	-	2.2	0.0	18.6	0.0	0	0
WS03	1	50	2 (2)			1.00 to 3.00	300 secs	-	-	-	-	2.2	0.0	18.6	0.0	0	0
WS03	1	50	2 (3)	3.00	2.99	1.00 to 3.00	06/10/2017 12:37:00	-	-	-	DRY	-	-	-	-	-	-
WS03	1	50	3	3.00		1.00 to 3.00	13/10/2017 11:50:00	1009	1009	0.0 _(l)	-	-	-	-	-	-	-
WS03	1	50	3			1.00 to 3.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS03	1	50	3 (2)	3.00		1.00 to 3.00	13/10/2017 11:51:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS03	1	50	3 (2)			1.00 to 3.00	15 secs	-	-	-	-	2.1	0.0	20.0	0.0	0	0
WS03	1	50	3 (2)			1.00 to 3.00	30 secs	-	-	-	-	2.1	0.0	19.3	0.0	0	0
WS03	1	50	3 (2)			1.00 to 3.00	60 secs	-	-	-	-	2.1	0.0	19.2	0.0	0	0
WS03	1	50	3 (2)			1.00 to 3.00	90 secs	-	-	-	-	2.1	0.0	19.2	0.0	0	0
ey: I = Initial, P	' = Peal	k, SS = Ste	eady State. No	ote: LEL = Lo	wer Explosive	e Limit = 5% v/v.											
RSK Environment Ltd Abbey Park			Mostrewge			Date Checked By 26/10/17						Date	Contra	Contract Ref:			
														313583			
Humber Road Contract: Coventry Roade Bypass CV3 4AQ CV3 4AQ														Page:		21 of	48

[Pressures] Previous During

<u>Start</u>

<u>End</u>

Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS03	1	50	3 (2)			1.00 to 3.00	120 secs	-	-	-	-	2.1	0.0	19.3	0.0	0	0
WS03	1	50	3 (2)			1.00 to 3.00	180 secs	-	-	-	-	2.1	0.0	19.3	0.0	0	0
WS03	1	50	3 (2)			1.00 to 3.00	240 secs	-	-	-	-	2.1	0.0	19.3	0.0	0	0
WS03	1	50	3 (2)			1.00 to 3.00	300 secs	-	-	-	-	2.1	0.0	19.3	0.0	0	0
WS03	1	50	3 (3)	3.00	3.02	1.00 to 3.00	13/10/2017 11:57:00	-	-	-	DRY	-	-	-	-	-	-
WS03	1	50	4	3.00		1.00 to 3.00	19/10/2017 12:39:00	993	993	0.0 _(I)	-	-	-	-	-	-	-
WS03	1	50	4			1.00 to 3.00	30 secs	993	993	0.0 _(SS)	-	-	-	-	-	-	-
WS03	1	50	4 (2)	3.00		1.00 to 3.00	19/10/2017 12:40:00	-	-	-	-	0.1	0.0	20.9	-	0	0
WS03	1	50	4 (2)			1.00 to 3.00	30 secs	-	-	-	-	1.9	0.0	20.5	-	0	0
WS03	1	50	4 (2)			1.00 to 3.00	45 secs	-	-	-	-	1.8	0.0	19.7	-	0	0
WS03	1	50	4 (2)			1.00 to 3.00	60 secs	-	-	-	-	1.8	0.0	19.6	-	0	0
WS03	1	50	4 (2)			1.00 to 3.00	90 secs	-	-	-	-	1.8	0.0	19.6	-	0	0
WS03	1	50	4 (2)			1.00 to 3.00	120 secs	-	-	-	-	1.8	0.0	19.6	-	0	0
WS03	1	50	4 (2)			1.00 to 3.00	180 secs	-	-	-	-	1.8	0.0	19.6	-	0	0
WS03	1	50	4 (2)			1.00 to 3.00	240 secs	-	-	-	-	1.8	0.0	19.6	-	0	0
WS03	1	50	4 (2)			1.00 to 3.00	300 secs	-	-	-	-	1.8	0.0	19.6	-	0	0
WS03	1	50	4 (2)			1.00 to 3.00	360 secs	-	-	-	-	1.8	0.0	19.6	-	0	0
WS03	1	50	4 (3)	3.00	3.00	1.00 to 3.00	19/10/2017 12:50:00	-	-	-	3.00	-	-	-	-	-	-
ey: I = Initial, P	= Peal	k, SS = Ste	eady State. No	ote: LEL = Lo	wer Explosive	e Limit = 5% v/v.											
RSK Environment Ltd			Compiled By			Date Checked By						Date	Contra	Contract Ref:			
CK	Abbey Park			n	Distrectly	S	26/10/17								313583		
Humber Road Contract: Coventry CV3 4AQ											Page: 22 of 48						

[Pressures] Previous During

<u>Start</u>

End

Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS04	1	50	1	2.00		1.00 to 2.00	28/09/2017 13:25:00	-	-	0.1 _(I)	-	-	-	-	-	-	-
WS04	1	50	1			1.00 to 2.00	30 secs	-	-	0.1 _(SS)	-	-	-	-	-	-	-
WS04	1	50	1 (2)	2.00		1.00 to 2.00	28/09/2017 13:26:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS04	1	50	1 (2)			1.00 to 2.00	15 secs	-	-	-	-	1.2	0.0	19.4	0.0	0	0
WS04	1	50	1 (2)			1.00 to 2.00	30 secs	-	-	-	-	1.2	0.0	19.5	0.0	0	0
WS04	1	50	1 (2)			1.00 to 2.00	60 secs	-	-	-	-	1.1	0.0	19.4	0.0	0	0
WS04	1	50	1 (2)			1.00 to 2.00	90 secs	-	-	-	-	1.1	0.0	19.4	0.0	0	0
WS04	1	50	1 (2)			1.00 to 2.00	120 secs	-	-	-	-	1.1	0.0	19.4	0.0	0	0
WS04	1	50	1 (2)			1.00 to 2.00	180 secs	-	-	-	-	1.1	0.0	19.4	0.0	0	0
WS04	1	50	1 (2)			1.00 to 2.00	240 secs	-	-	-	-	1.1	0.0	19.4	0.0	0	0
WS04	1	50	1 (2)			1.00 to 2.00	300 secs	-	-	-	-	1.1	0.0	19.4	0.0	0	0
WS04	1	50	1 (3)	2.00	2.10	1.00 to 2.00	28/09/2017 13:32:00	-	-	-	DRY	-	-	-	-	-	-
WS04	1	50	2	2.00		1.00 to 2.00	06/10/2017 14:20:00	1008	1008	0.0 _(I)	-	-	-	-	-	-	-
WS04	1	50	2			1.00 to 2.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS04	1	50	2 (2)	2.00		1.00 to 2.00	06/10/2017 14:21:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS04	1	50	2 (2)			1.00 to 2.00	15 secs	-	-	-	-	0.1	0.0	20.7	0.0	1	0
WS04	1	50	2 (2)			1.00 to 2.00	30 secs	-	-	-	-	0.2	0.0	20.6	0.0	0	0
Key: I = Initial, F	P = Pea	k, SS = St	eady State. No	ote: LEL = Lo	wer Explosive	e Limit = 5% v/v.			1				1	11			
	RSK Environment Ltd Abbey Park			Compiled By			Date	Date Checked By				Date			Contract Ref:		
R R					Distreaky	e	26/10/17									31358	3
Humber Road				Contract:										Page:			

Roade Bypass

23 of 48

AGS

Coventry

CV3 4AQ

[Pressures] Previous During

<u>Start</u>

<u>End</u>

Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS04	1	50	2 (2)			1.00 to 2.00	60 secs	-	-	-	-	0.2	0.0	20.5	0.0	0	0
WS04	1	50	2 (2)			1.00 to 2.00	90 secs	-	-	-	-	0.2	0.0	20.5	0.0	0	0
WS04	1	50	2 (2)			1.00 to 2.00	120 secs	-	-	-	-	0.3	0.0	20.4	0.0	0	0
WS04	1	50	2 (2)			1.00 to 2.00	180 secs	-	-	-	-	0.5	0.0	20.2	0.0	0	0
WS04	1	50	2 (2)			1.00 to 2.00	240 secs	-	-	-	-	0.6	0.0	20.0	0.0	0	0
WS04	1	50	2 (2)			1.00 to 2.00	300 secs	-	-	-	-	0.8	0.0	19.8	0.0	0	0
WS04	1	50	2 (2)			1.00 to 2.00	360 secs	-	-	-	-	1.0	0.0	19.7	0.0	0	0
WS04	1	50	2 (2)			1.00 to 2.00	420 secs	-	-	-	-	1.0	0.0	19.7	0.0	0	0
WS04	1	50	2 (3)	2.00	2.12	1.00 to 2.00	06/10/2017 14:29:00	-	-	-	1.90	-	-	-	-	-	-
WS04	1	50	3	2.00		1.00 to 2.00	13/10/2017 11:20:00	1007	1007	0.0 _(l)	-	-	-	-	-	-	-
WS04	1	50	3			1.00 to 2.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS04	1	50	3 (2)	2.00		1.00 to 2.00	13/10/2017 11:21:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS04	1	50	3 (2)			1.00 to 2.00	15 secs	-	-	-	-	1.3	0.0	20.4	0.0	1	0
WS04	1	50	3 (2)			1.00 to 2.00	30 secs	-	-	-	-	1.3	0.0	19.8	0.0	0	0
WS04	1	50	3 (2)			1.00 to 2.00	60 secs	-	-	-	-	1.3	0.0	19.8	0.0	0	0
WS04	1	50	3 (2)			1.00 to 2.00	90 secs	-	-	-	-	1.3	0.0	19.8	0.0	0	0
WS04	1	50	3 (2)			1.00 to 2.00	120 secs	-	-	-	-	1.3	0.0	19.8	0.0	0	0
WS04	1	50	3 (2)			1.00 to 2.00	180 secs	-	-	-	-	1.3	0.0	19.8	0.0	0	0
-			•	ote: LEL = Lo	wer Explosive Compiled B	e Limit = 5% v/v.	Date		Chec	ked By			Date	Contra	act Ref:	-	
R	A	bbey P		n	DStrews		26/10/17		Chec				Dale			31358	3
		mber F Covent CV3 4A	try	Contract:			Roade	Bypass						Page:	2	24 of	48

[Pressures] Previous During

<u>Start</u>

End Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone		Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS04	1	50	3 (2)			1.00 to 2.00	240 secs	-	-	-	-	1.3	0.0	19.8	0.0	0	0
WS04	1	50	3 (2)			1.00 to 2.00	300 secs	-	-	-	-	1.3	0.0	19.8	0.0	0	0
WS04	1	50	3 (3)	2.00	2.10	1.00 to 2.00	13/10/2017 11:27:00	-	-	-	1.87	-	-	-	-	-	-
WS04	1	50	4	2.00		1.00 to 2.00	19/10/2017 12:03:00	995	995	0.0 _(I)	-	-	-	-	-	-	-
WS04	1	50	4			1.00 to 2.00	15 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS04	1	50	4 (2)	2.00		1.00 to 2.00	19/10/2017 12:03:30	-	-	-	-	0.1	0.0	20.9	-	0	0
WS04	1	50	4 (2)			1.00 to 2.00	30 secs	-	-	-	-	1.3	0.0	20.6	-	0	0
WS04	1	50	4 (2)			1.00 to 2.00	45 secs	-	-	-	-	1.2	0.0	19.9	-	0	0
WS04	1	50	4 (2)			1.00 to 2.00	60 secs	-	-	-	-	1.2	0.0	19.9	-	0	0
WS04	1	50	4 (2)			1.00 to 2.00	90 secs	-	-	-	-	1.2	0.0	19.9	-	0	0
WS04	1	50	4 (2)			1.00 to 2.00	105 secs	-	-	-	-	1.2	0.0	19.9	-	0	0
WS04	1	50	4 (2)			1.00 to 2.00	150 secs	-	-	-	-	1.2	0.0	19.9	-	0	0
WS04	1	50	4 (2)			1.00 to 2.00	210 secs	-	-	-	-	1.2	0.0	19.9	-	0	0
WS04	1	50	4 (2)			1.00 to 2.00	270 secs	-	-	-	-	1.2	0.0	19.9	-	0	0
WS04	1	50	4 (3)	2.00	2.10	1.00 to 2.00	19/10/2017 12:09:00	-	-	-	1.87	-	-	-	-	-	-
WS05	1	50	1	4.00		2.00 to 4.00	28/09/2017	1008	1008	-0.1 _(I)	-	-	-	-	-	-	-
WS05	1	50	1			2.00 to 4.00	30 secs	-	-	-0.1 _(SS)	-	-	-	-	-	-	-
Key: I = Initial, F	? = Peal	k, SS = Ste	eady State. No	ote: LEL = Lo	wer Explosiv	e Limit = 5% v/v.											
•			ment Ltd		Compiled B		Date		Che	cked By			Date	Contr	act Ref:		
	A	bbey P	ark	n	Distreaky	e	26/10/17									31358	3
	Hu	imber F	Road	Contract:										Page:			

Roade Bypass

25 of **48**

AGS

GINT_LIBRARY_V8_06.GLB : E - GAS MON - STANDARD - 6B - A4L : 313583 - ROADE BYPASS.GPJ : 26/10/17 09:44 : MS4 :

Coventry

CV3 4AQ

[Pressures] Previous During

End Equipment Used & Remarks

Exploratory Position	Pipe	Pipe diameter	Monitoring Round	Reported Installation	Measured Installation	Response Zone	Date & Time	Borehole Pressure		Gas Flow	Water Depth	Carbon Dioxide	Methane	Oxygen	LEL	Carbon Monoxide	Hydroge Sulphid
ID	ref	(mm)	Round	Depth (m)	Depth (mbgl)	Response zone	of Monitoring (elapsed time)	(mb)	(mb)	(l/hr)	(mbgl)	(% / vol)	(% / vol)	(% / vol)	(%)	(ppm)	(ppm)
WS05	1	50	1 (2)	4.00		2.00 to 4.00	28/09/2017 00:01:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS05	1	50	1 (2)			2.00 to 4.00	15 secs	-	-	-	-	0.3	0.0	20.1	0.0	2	0
WS05	1	50	1 (2)			2.00 to 4.00	30 secs	-	-	-	-	0.3	0.0	19.7	0.0	2	0
WS05	1	50	1 (2)			2.00 to 4.00	60 secs	-	-	-	-	0.4	0.0	19.7	0.0	2	0
WS05	1	50	1 (2)			2.00 to 4.00	90 secs	-	-	-	-	0.4	0.0	19.6	0.0	2	0
WS05	1	50	1 (2)			2.00 to 4.00	120 secs	-	-	-	-	0.4	0.0	19.5	0.0	2	0
WS05	1	50	1 (2)			2.00 to 4.00	180 secs	-	-	-	-	0.5	0.0	19.4	0.0	1	0
WS05	1	50	1 (2)			2.00 to 4.00	240 secs	-	-	-	-	0.6	0.0	19.3	0.0	2	0
WS05	1	50	1 (2)			2.00 to 4.00	300 secs	-	-	-	-	0.6	0.0	19.2	0.0	1	0
WS05	1	50	1 (3)	4.00	4.07	2.00 to 4.00	28/09/2017 00:07:00	-	-	-	DRY	-	-	-	-	-	-
WS05	1	50	2	4.00		2.00 to 4.00	06/10/2017 13:10:00	1008	1008	0.0 _(I)	-	-	-	-	-	-	-
WS05	1	50	2			2.00 to 4.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS05	1	50	2 (2)	4.00		2.00 to 4.00	06/10/2017 13:11:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS05	1	50	2 (2)			2.00 to 4.00	15 secs	-	-	-	-	0.8	0.0	20.0	0.0	1	0
WS05	1	50	2 (2)			2.00 to 4.00	30 secs	-	-	-	-	0.8	0.0	19.0	0.0	0	0
WS05	1	50	2 (2)			2.00 to 4.00	60 secs	-	-	-	-	0.8	0.0	18.8	0.0	0	0
WS05	1	50	2 (2)			2.00 to 4.00	90 secs	-	-	-	-	0.8	0.0	18.8	0.0	0	0
WS05	1	50	2 (2)			2.00 to 4.00	120 secs	_	_	_	_	0.9	0.0	18.7	0.0	0	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

<u>Start</u>

E E	RSK Environment Ltd	Compiled By	Date	Checked By	Date	Contract Ref:			
DCK	Abbey Park	Mostrewger	26/10/17			3	813583	3	
	Humber Road	Contract:				Page:			
	Coventry CV3 4AQ		Roade	Bypass		26	of	48	AGS

Hydrogen Sulphide

(ppm)

-

[Pressures] Previous During

End Equipment Used & Remarks

Start

Exploratory Position	Pipe	Pipe diameter	Monitoring Round	Reported Installation	Measured Installation	Response Zone	Date & Time	Borehole Pressure		Gas Flow	Water Depth	Carbon Dioxide	Methane	Oxygen	LEL	Carbon Monoxide	H १
ID	ref	(mm)		Depth (m)	Depth (mbgl)		of Monitoring (elapsed time)	(mb)	(mb)	(l/hr)	(mbgl)	(% / vol)	(% / vol)	(% / vol)	(%)	(ppm)	
WS05	1	50	2 (2)			2.00 to 4.00	180 secs	-	-	-	-	0.9	0.0	18.6	0.0	0	
WS05	1	50	2 (2)			2.00 to 4.00	240 secs	-	-	-	-	0.9	0.0	18.6	0.0	0	
WS05	1	50	2 (2)			2.00 to 4.00	300 secs	-	-	-	-	0.9	0.0	18.6	0.0	0	
WS05	1	50	2 (3)	4.00	4.10	2.00 to 4.00	06/10/2017 13:17:00	-	-	-	3.99	-	-	-	-	-	
WS05	1	50	3	4.00		2.00 to 4.00	13/10/2017 11:12:00	-	-	0.0 _(l)	-	-	-	-	-	-	
WS05	1	50	3			2.00 to 4.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	
WS05	1	50	3 (2)	4.00		2.00 to 4.00	13/10/2017 11:13:00	-	-	-	-	0.1	0.0	20.9	-	0	
WS05	1	50	3 (2)			2.00 to 4.00	60 secs	-	-	-	-	1.7	0.0	19.6	-	0	
WS05	1	50	3 (2)			2.00 to 4.00	120 secs	-	-	I	-	1.6	0.0	17.3	-	0	
WS05	1	50	3 (2)			2.00 to 4.00	150 secs	-	-	I	-	1.6	0.0	17.2	-	0	
WS05	1	50	3 (2)			2.00 to 4.00	180 secs	-	-	-	-	1.6	0.0	17.1	-	0	
WS05	1	50	3 (2)			2.00 to 4.00	210 secs	-	-	-	-	1.6	0.0	17.1	-	0	
WS05	1	50	3 (2)			2.00 to 4.00	240 secs	-	-	-	-	1.6	0.0	17.1	-	0	
WS05	1	50	3 (2)			2.00 to 4.00	300 secs	-	-	-	-	1.6	0.0	17.1	-	0	
WS05	1	50	3 (2)			2.00 to 4.00	360 secs	-	-	-	-	1.6	0.0	17.1	-	0	
WS05	1	50	3 (3)	4.00	4.10	2.00 to 4.00	13/10/2017 11:21:00	-	-	I	3.97	-	-	-	-	-	
WS05	1	50	4	4.00		2.00 to 4.00	19/10/2017 11:53:00	995	995	0.0 _(I)	-	-	-	-	-	-	
WS05	1	50	4			2.00 to 4.00	15 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

	RSK Environment Ltd	Compiled By	Date	Checked By	Date	Contract Ref:			
DCK	Abbey Park	Mostreukje	26/10/17			;	313583	3	
	Humber Road	Contract:	•		•	Page:			
	Coventry CV3 4AQ		Roade	Bypass		27	of	48	AGS

[Pressures] Previous During

<u>Start</u>

<u>End</u>

Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS05	1	50	4 (2)	4.00		2.00 to 4.00	19/10/2017 11:53:30	-	-	-	-	0.1	0.0	20.9	-	0	0
WS05	1	50	4 (2)			2.00 to 4.00	30 secs	-	-	-	-	1.8	0.0	19.2	-	0	0
WS05	1	50	4 (2)			2.00 to 4.00	90 secs	-	-	-	-	1.7	0.0	17.3	-	0	0
WS05	1	50	4 (2)			2.00 to 4.00	120 secs	-	-	-	-	1.7	0.0	17.2	-	0	0
WS05	1	50	4 (2)			2.00 to 4.00	150 secs	-	-	-	-	1.7	0.0	17.2	-	0	0
WS05	1	50	4 (2)			2.00 to 4.00	180 secs	-	-	-	-	1.7	0.0	17.2	-	0	0
WS05	1	50	4 (2)			2.00 to 4.00	210 secs	-	-	-	-	1.7	0.0	17.2	-	0	0
WS05	1	50	4 (2)			2.00 to 4.00	270 secs	-	-	-	-	1.7	0.0	17.2	-	0	0
WS05	1	50	4 (2)			2.00 to 4.00	330 secs	-	-	-	-	1.7	0.0	17.2	-	0	0
WS05	1	50	4 (3)	4.00	4.07	2.00 to 4.00	19/10/2017 12:00:00	-	-	-	3.95	-	-	-	-	-	-
WS06	1	50	1	4.00		2.00 to 4.00	28/09/2017	1020	1008	19.4 _(SS)	-	-	-	-	-	-	-
WS06	1	50	1			2.00 to 4.00	240 secs	-	-	0.2	-	-	-	-	-	-	-
WS06	1	50	1 (2)	4.00		2.00 to 4.00	28/09/2017 00:04:30	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS06	1	50	1 (2)			2.00 to 4.00	15 secs	-	-	-	-	1.2	0.0	18.5	0.0	2	0
WS06	1	50	1 (2)			2.00 to 4.00	30 secs	-	-	-	-	1.2	0.0	17.9	0.0	2	0
WS06	1	50	1 (2)			2.00 to 4.00	60 secs	-	-	-	-	1.2	0.0	17.9	0.0	2	0
WS06	1	50	1 (2)			2.00 to 4.00	90 secs	-	-	-	-	1.2	0.0	17.9	0.0	2	0
ey: I = Initial, P	e Peal	k, SS = Ste	eady State. No	ote: LEL = Lo	wer Explosive	e Limit = 5% v/v.		1 1									1
D		nviron	ment Ltd		Compiled B	Зу	Date		Chec	ked By			Date	Contra	act Ref:		
SK	A	bbey P	ark	n	Ostrewy	S	26/10/17									31358	3
		imber F Covent CV3 4A	ry	Contract:			Roade	Bypass						Page:		28 of	48

AGS

[Pressures] Previous During

<u>Start</u>

<u>End</u>

Equipment Used & Remarks

| 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 1 50 | 0 1 (2) 0 1 (2) 0 1 (2) 0 1 (2) 0 1 (3) | |
 | 2.00 to 4.00
2.00 to 4.00 | 120 secs | -
 |
 | |
 | | |
 | | | (ppm) | | |
|--|---|--
--
---|---|--
--
---|--

--	--	---	--
1 50 1 50 1 50 1 50 1 50 1 50	0 1 (2) 0 1 (2) 0 1 (3)		
 | 2.00 to 4.00 | |
 | -
 | - | -
 | 1.2 | 0.0 | 17.9
 | 0.0 | 2 | 0 | | |
| 1 50
1 50
1 50 | 0 1 (2)
0 1 (3) | |
 | | 180 secs | -
 | -
 | - | -
 | 1.2 | 0.0 | 17.9
 | 0.0 | 2 | 0 | | |
| 1 50
1 50 | 0 1 (3) | |
 | 2.00 to 4.00 | 240 secs | -
 | -
 | - | -
 | 1.2 | 0.0 | 17.8
 | 0.0 | 2 | 0 | | |
| 1 50 | | |
 | 2.00 to 4.00 | 300 secs | -
 | -
 | - | -
 | 1.2 | 0.0 | 17.8
 | 0.0 | 2 | 0 | | |
| | | 4.00 | 4.18
 | 2.00 to 4.00 | 28/09/2017 00:10:30 | -
 | -
 | - | 2.45
 | - | - | -
 | - | - | - | | |
| 1 50 | 0 2 | 4.00 |
 | 2.00 to 4.00 | 05/10/2017 12:40:00 | 1009
 | 1008
 | 2.2 _(I) | -
 | - | - | -
 | - | - | - | | |
| 1 00 | 0 2 | |
 | 2.00 to 4.00 | 120 secs | -
 | -
 | 0.1 _(SS) | -
 | - | - | -
 | - | - | - | | |
| 1 50 | 0 2 (2) | 4.00 |
 | 2.00 to 4.00 | 05/10/2017 12:43:00 | -
 | -
 | - | -
 | 0.0 | 0.0 | 20.9
 | 0.0 | 0 | 0 | | |
| 1 50 | 0 2 (2) | |
 | 2.00 to 4.00 | 15 secs | -
 | -
 | - | -
 | 1.1 | 0.0 | 19.3
 | 0.0 | 2 | 0 | | |
| 1 50 | 0 2 (2) | |
 | 2.00 to 4.00 | 30 secs | -
 | -
 | - | -
 | 1.1 | 0.0 | 18.4
 | 0.0 | 2 | 0 | | |
| 1 50 | 0 2 (2) | |
 | 2.00 to 4.00 | 60 secs | -
 | -
 | - | -
 | 1.1 | 0.0 | 18.3
 | 0.0 | 2 | 0 | | |
| 1 50 | 0 2 (2) | |
 | 2.00 to 4.00 | 90 secs | -
 | -
 | - | -
 | 1.1 | 0.0 | 18.2
 | 0.0 | 2 | 0 | | |
| 1 50 | 0 2 (2) | |
 | 2.00 to 4.00 | 120 secs | -
 | -
 | - | -
 | 1.1 | 0.0 | 18.2
 | 0.0 | 2 | 0 | | |
| 1 50 | 0 2 (2) | |
 | 2.00 to 4.00 | 180 secs | -
 | -
 | - | -
 | 1.1 | 0.0 | 18.2
 | 0.0 | 2 | 0 | | |
| 1 50 | 0 2 (2) | |
 | 2.00 to 4.00 | 240 secs | -
 | -
 | - | -
 | 1.1 | 0.0 | 18.2
 | 0.0 | 2 | 0 | | |
| 1 50 | 0 2 (2) | |
 | 2.00 to 4.00 | 300 secs | -
 | -
 | - | -
 | 1.1 | 0.0 | 18.3
 | 0.0 | 2 | 0 | | |
| 1 50 | 0 2 (3) | 4.00 | 4.18
 | 2.00 to 4.00 | 05/10/2017 12:49:00 | -
 | -
 | - | 2.36
 | - | - | -
 | - | - | - | | |
| 1 50 | 0 3 | 4.00 |
 | 2.00 to 4.00 | 13/10/2017 10:55:00 | 1007
 | 1007
 | -1.1 _(l) | -
 | - | - | -
 | - | - | - | | |
| Peak, SS = | = Steady State. N | ote: LEL = Lo | ower Explosive
 | e Limit = 5% v/v. | |
 |
 | |
 | | |
 | | | | | |
| Envir | ronment I td | | Compiled B
 | Sy | Date |
 | Chec
 | ked By |
 | | Date | Contra
 | act Ref: | | | | |
| | | n | DStreaks
 | S | 26/10/17 |
 |
 | |
 | | |
 | | 31358 | 3 | | |
| Humbe | er Road | Contract: | 7
 | | Poado | Bypacs
 |
 | |
 | I | | Page:
 | | 00 of | 48 | | |
| 1
1
1
1
1
1
1
1
1
1
1
1 | 5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5 | 50 2 (2) 50 2 (2) 50 2 (2) 50 2 (2) 50 2 (2) 50 2 (2) 50 2 (2) 50 2 (2) 50 2 (2) 50 2 (2) 50 2 (2) 50 2 (2) 50 2 (2) 50 2 (3) 50 3 | 50 2 (2) 50 2 (2) 50 2 (2) 50 2 (2) 50 2 (2) 50 2 (2) 50 2 (2) 50 2 (2) 50 2 (2) 50 2 (2) 50 2 (2) 50 2 (3) 4.00 50 3 4.00 50 3 4.00 50 3 4.00 50 3 4.00 50 3 4.00 50 3 4.00 50 3 4.00 50 3 4.00 50 3 6 3 6 0 7 0 6 0 7 0 6 0 7 0 6 0 7 0 50 <td>50 2 (2) 50 2 (2) 50 2 (2) 50 2 (2) 50 2 (2) 50 2 (2) 50 2 (2) 50 2 (2) 50 2 (2) 50 2 (2) 50 2 (2) 50 2 (3) 4.00 4.18 50 3 4.00 eak, SS = Steady State. Note: LEL = Lower Explosive Compiled E MDStrack Compiled E MDStrack Contract:</td> <td>50 2 (2) 2.00 to 4.00 50 2 (3) 4.00 4.18 2.00 to 4.00 50 3 4.00 2.00 to 4.00 50 3 4.00 2.00 to 4.00 complet By Compiled By MDStrews Contract:</td> <td>50 2 (2) 2.00 to 4.00 15 secs 50 2 (2) 2.00 to 4.00 30 secs 50 2 (2) 2.00 to 4.00 60 secs 50 2 (2) 2.00 to 4.00 90 secs 50 2 (2) 2.00 to 4.00 90 secs 50 2 (2) 2.00 to 4.00 120 secs 50 2 (2) 2.00 to 4.00 180 secs 50 2 (2) 2.00 to 4.00 240 secs 50 2 (2) 2.00 to 4.00 300 secs 50 2 (2) 2.00 to 4.00 300 secs 50 2 (2) 2.00 to 4.00 300 secs 50 2 (3) 4.00 4.18 2.00 to 4.00 13/10/2017 10:55:00 Eak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v. Compiled By Date MDStrews <td colspan<="" t<="" td=""><td>50 2 (2) 2.00 to 4.00 15 secs - 50 2 (2) 2.00 to 4.00 30 secs - 50 2 (2) 2.00 to 4.00 30 secs - 50 2 (2) 2.00 to 4.00 60 secs - 50 2 (2) 2.00 to 4.00 90 secs - 50 2 (2) 2.00 to 4.00 120 secs - 50 2 (2) 2.00 to 4.00 180 secs - 50 2 (2) 2.00 to 4.00 180 secs - 50 2 (2) 2.00 to 4.00 300 secs - 50 2 (2) 2.00 to 4.00 05/10/2017 12:49:00 - 50 2 (3) 4.00 2.00 to 4.00 13/10/2017 10:55:00 1007 seak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v. Environment Ltd MDStrace 26/10/17 Contract: <</td><td>50 2 (2) 2.00 to 4.00 15 secs - - 50 2 (2) 2.00 to 4.00 30 secs - - 50 2 (2) 2.00 to 4.00 60 secs - - 50 2 (2) 2.00 to 4.00 60 secs - - 50 2 (2) 2.00 to 4.00 90 secs - - 50 2 (2) 2.00 to 4.00 120 secs - - 50 2 (2) 2.00 to 4.00 180 secs - - 50 2 (2) 2.00 to 4.00 300 secs - - 50 2 (2) 2.00 to 4.00 300 secs - - 50 2 (3) 4.00 4.18 2.00 to 4.00 13/10/2017 12:49:00 - - 50 3 4.00 2.00 to 4.00 13/10/2017 10:55:00 1007 1007 <td col<="" td=""><td>50 2 (2) 2.00 to 4.00 15 secs - - - 50 2 (2) 2.00 to 4.00 30 secs - - - 50 2 (2) 2.00 to 4.00 60 secs - - - 50 2 (2) 2.00 to 4.00 90 secs - - - 50 2 (2) 2.00 to 4.00 90 secs - - - 50 2 (2) 2.00 to 4.00 120 secs - - - 50 2 (2) 2.00 to 4.00 180 secs - - - 50 2 (2) 2.00 to 4.00 240 secs - - - 50 2 (2) 2.00 to 4.00 05/10/2017 12:49:00 - - - 50 2 (3) 4.00 4.18 2.00 to 4.00 13/10/2017 10:55:00 1007 1007 -1.1₍₀ teak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v. Compiled By</td><td>50 2 (2) 2.00 to 4.00 15 secs - 50 2 (2) 2.00 to 4.00 180 secs - 2.00 to 4.00 300 secs <</td><td>50 2 (2) 2.00 to 4.00 15 secs - - - 1.1 50 2 (2) 2.00 to 4.00 30 secs - - - 1.1 50 2 (2) 2.00 to 4.00 60 secs - - - 1.1 50 2 (2) 2.00 to 4.00 60 secs - - - 1.1 50 2 (2) 2.00 to 4.00 90 secs - - - 1.1 50 2 (2) 2.00 to 4.00 120 secs - - - 1.1 50 2 (2) 2.00 to 4.00 180 secs - - - 1.1 50 2 (2) 2.00 to 4.00 300 secs - - 1.1 50 2 (2) 2.00 to 4.00 300 secs - - 1.1 50 2 (3) 4.00 4.18 2.00 to 4.00 05/10/2017 12:49:00 - - 2.36 - 50 3</td><td>50 2 (2) 2.00 to 4.00 15 secs - - - 1.1 0.0 50 2 (2) 2.00 to 4.00 30 secs - - - 1.1 0.0 50 2 (2) 2.00 to 4.00 60 secs - - 1.1 0.0 50 2 (2) 2.00 to 4.00 90 secs - - 1.1 0.0 50 2 (2) 2.00 to 4.00 90 secs - - 1.1 0.0 50 2 (2) 2.00 to 4.00 120 secs - - 1.1 0.0 50 2 (2) 2.00 to 4.00 180 secs - - 1.1 0.0 50 2 (2) 2.00 to 4.00 240 secs - - 1.1 0.0 50 2 (2) 2.00 to 4.00 300 secs - - 1.1 0.0 50 2 (3) 4.00 4.18 2.00 to 4.00 13/10/2017 12:49:00 - -</td><td>50 2 (2) 2.00 to 4.00 15 secs - - - 1.1 0.0 19.3 50 2 (2) 2.00 to 4.00 30 secs - - - 1.1 0.0 18.4 50 2 (2) 2.00 to 4.00 60 secs - - - 1.1 0.0 18.3 50 2 (2) 2.00 to 4.00 90 secs - - - 1.1 0.0 18.2 50 2 (2) 2.00 to 4.00 10 secs - - - 1.1 0.0 18.2 50 2 (2) 2.00 to 4.00 180 secs - - - 1.1 0.0 18.2 50 2 (2) 2.00 to 4.00 180 secs - - - 1.1 0.0 18.2
50 2 (2) 2.00 to 4.00 300 secs - - - 1.1 0.0 18.2 50 2 (3) 4.00 2.00 to 4.00 05</td><td>50 2 (2) 2 .00 to 4.00 15 secs - - - 1.1 0.0 19.3 0.0 50 2 (2) 2 .00 to 4.00 30 secs - - - 1.1 0.0 18.4 0.0 50 2 (2) 2 .00 to 4.00 60 secs - - - 1.1 0.0 18.4 0.0 50 2 (2) 2 .00 to 4.00 90 secs - - - 1.1 0.0 18.2 0.0 50 2 (2) 2 .00 to 4.00 120 secs - - - 1.1 0.0 18.2 0.0 50 2 (2) 2 .00 to 4.00 180 secs - - - 1.1 0.0 18.2 0.0 50 2 (2) 2 .00 to 4.00 240 secs - - - 1.1 0.0 18.2 0.0 50 2 (3) 4 .00 2 .00 to 4.00 05/10/2017 12.49:00 - - - - -<!--</td--><td>50 2 (2) 2.00 to 4.00 15 secs - - - 1.1 0.0 19.3 0.0 2 50 2 (2) 2.00 to 4.00 30 secs - - - 1.1 0.0 18.4 0.0 2 50 2 (2) 2.00 to 4.00 60 secs - - - 1.1 0.0 18.3 0.0 2 50 2 (2) 2.00 to 4.00 90 secs - - - 1.1 0.0 18.2 0.0 2 50 2 (2) 2.00 to 4.00 120 secs - - - 1.1 0.0 18.2 0.0 2 50 2 (2) 2.00 to 4.00 180 secs - - - 1.1 0.0 18.2 0.0 2 50 2 (2) 2.00 to 4.00 300 secs - - - 1.1 0.0 18.3 0.0 2 50 2 (3) 4.00 4.18 2.00 to 4.00</td></td></td></td></td></td> | 50 2 (2) 50 2 (2) 50 2 (2) 50 2 (2) 50 2 (2) 50 2 (2) 50 2 (2) 50 2 (2) 50 2 (2) 50 2 (2) 50 2 (2) 50 2 (3) 4.00 4.18 50 3 4.00 eak, SS = Steady State. Note: LEL = Lower Explosive Compiled E MDStrack Compiled E MDStrack Contract: | 50 2 (2) 2.00 to 4.00 50 2 (3) 4.00 4.18 2.00 to 4.00 50 3 4.00 2.00 to 4.00 50 3 4.00 2.00 to 4.00 complet By Compiled By MDStrews Contract: | 50 2 (2) 2.00 to 4.00 15 secs 50 2 (2) 2.00 to 4.00 30 secs 50 2 (2) 2.00 to 4.00 60 secs 50 2 (2) 2.00 to 4.00 90 secs 50 2 (2) 2.00 to 4.00 90 secs 50 2 (2) 2.00 to 4.00 120 secs 50 2 (2) 2.00 to 4.00 180 secs 50 2 (2) 2.00 to 4.00 240 secs 50 2 (2) 2.00 to 4.00 300 secs 50 2 (2) 2.00 to 4.00 300 secs 50 2 (2) 2.00 to 4.00 300 secs 50 2 (3) 4.00 4.18 2.00 to 4.00 13/10/2017 10:55:00 Eak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v. Compiled By Date MDStrews <td colspan<="" t<="" td=""><td>50 2 (2) 2.00 to 4.00 15 secs - 50 2 (2) 2.00 to 4.00 30 secs - 50 2 (2) 2.00 to 4.00 30 secs - 50 2 (2) 2.00 to 4.00 60 secs - 50 2 (2) 2.00 to 4.00 90 secs - 50 2 (2) 2.00 to 4.00 120 secs - 50 2 (2) 2.00 to 4.00 180 secs - 50 2 (2) 2.00 to 4.00 180 secs - 50 2 (2) 2.00 to 4.00 300 secs - 50 2 (2) 2.00 to 4.00 05/10/2017 12:49:00 - 50 2 (3) 4.00 2.00 to 4.00 13/10/2017 10:55:00 1007 seak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v. Environment Ltd MDStrace 26/10/17 Contract: <</td><td>50 2 (2) 2.00 to 4.00 15 secs - - 50 2 (2) 2.00 to 4.00 30 secs - - 50 2 (2) 2.00 to 4.00 60 secs - - 50 2 (2) 2.00 to 4.00 60 secs - - 50 2 (2) 2.00 to 4.00 90 secs - - 50 2 (2) 2.00 to 4.00 120 secs - - 50 2 (2) 2.00 to 4.00 180 secs - - 50 2 (2) 2.00 to 4.00 300 secs - - 50 2 (2) 2.00 to 4.00 300 secs - - 50 2 (3) 4.00 4.18 2.00 to 4.00 13/10/2017 12:49:00 - - 50 3 4.00 2.00 to 4.00 13/10/2017 10:55:00 1007 1007 <td col<="" td=""><td>50 2 (2) 2.00 to 4.00 15 secs - - - 50 2 (2) 2.00 to 4.00 30 secs - - - 50 2 (2) 2.00 to 4.00 60 secs - - - 50 2 (2) 2.00 to 4.00 90 secs - - - 50 2 (2) 2.00 to 4.00 90 secs - - - 50 2 (2) 2.00 to 4.00 120 secs - - - 50 2 (2) 2.00 to 4.00 180 secs - - - 50 2 (2) 2.00 to 4.00 240 secs - - - 50 2 (2) 2.00 to 4.00 05/10/2017 12:49:00 - - - 50 2 (3) 4.00 4.18 2.00 to 4.00 13/10/2017 10:55:00 1007 1007 -1.1₍₀ teak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v. Compiled By</td><td>50 2 (2) 2.00 to 4.00 15 secs - 50 2 (2) 2.00 to 4.00 180 secs - 2.00 to 4.00 300 secs <</td><td>50 2 (2) 2.00 to 4.00 15 secs - - - 1.1 50 2 (2) 2.00 to 4.00 30 secs - - - 1.1 50 2 (2) 2.00 to 4.00 60 secs - - - 1.1 50 2 (2) 2.00 to 4.00 60 secs - - - 1.1 50 2 (2) 2.00 to 4.00 90 secs - - - 1.1 50 2 (2) 2.00 to 4.00 120 secs - - - 1.1 50 2 (2) 2.00 to 4.00 180 secs - - - 1.1 50 2 (2) 2.00 to 4.00 300 secs - - 1.1 50 2 (2) 2.00 to 4.00 300 secs - - 1.1 50 2 (3) 4.00 4.18 2.00 to 4.00 05/10/2017 12:49:00 - - 2.36 - 50 3</td><td>50 2 (2) 2.00 to 4.00 15 secs - - - 1.1 0.0 50 2 (2) 2.00 to 4.00 30 secs - - - 1.1 0.0 50 2 (2) 2.00 to 4.00 60 secs - - 1.1 0.0 50 2 (2) 2.00 to 4.00 90 secs - - 1.1 0.0 50 2 (2) 2.00 to 4.00 90 secs - - 1.1 0.0 50 2 (2) 2.00 to 4.00 120 secs - - 1.1 0.0 50 2 (2) 2.00 to 4.00 180 secs - - 1.1 0.0 50 2 (2) 2.00 to 4.00 240 secs - - 1.1 0.0 50 2 (2) 2.00 to 4.00 300 secs - - 1.1 0.0 50 2 (3) 4.00 4.18 2.00 to 4.00 13/10/2017 12:49:00 - -</td><td>50 2 (2) 2.00 to 4.00 15 secs - - - 1.1 0.0 19.3 50 2 (2) 2.00 to 4.00 30 secs - - -
 1.1 0.0 18.4 50 2 (2) 2.00 to 4.00 60 secs - - - 1.1 0.0 18.3 50 2 (2) 2.00 to 4.00 90 secs - - - 1.1 0.0 18.2 50 2 (2) 2.00 to 4.00 10 secs - - - 1.1 0.0 18.2 50 2 (2) 2.00 to 4.00 180 secs - - - 1.1 0.0 18.2 50 2 (2) 2.00 to 4.00 180 secs - - - 1.1 0.0 18.2 50 2 (2) 2.00 to 4.00 300 secs - - - 1.1 0.0 18.2 50 2 (3) 4.00 2.00 to 4.00 05</td><td>50 2 (2) 2 .00 to 4.00 15 secs - - - 1.1 0.0 19.3 0.0 50 2 (2) 2 .00 to 4.00 30 secs - - - 1.1 0.0 18.4 0.0 50 2 (2) 2 .00 to 4.00 60 secs - - - 1.1 0.0 18.4 0.0 50 2 (2) 2 .00 to 4.00 90 secs - - - 1.1 0.0 18.2 0.0 50 2 (2) 2 .00 to 4.00 120 secs - - - 1.1 0.0 18.2 0.0 50 2 (2) 2 .00 to 4.00 180 secs - - - 1.1 0.0 18.2 0.0 50 2 (2) 2 .00 to 4.00 240 secs - - - 1.1 0.0 18.2 0.0 50 2 (3) 4 .00 2 .00 to 4.00 05/10/2017 12.49:00 - - - - -<!--</td--><td>50 2 (2) 2.00 to 4.00 15 secs - - - 1.1 0.0 19.3 0.0 2 50 2 (2) 2.00 to 4.00 30 secs - - - 1.1 0.0 18.4 0.0 2 50 2 (2) 2.00 to 4.00 60 secs - - - 1.1 0.0 18.3 0.0 2 50 2 (2) 2.00 to 4.00 90 secs - - - 1.1 0.0 18.2 0.0 2 50 2 (2) 2.00 to 4.00 120 secs - - - 1.1 0.0 18.2 0.0 2 50 2 (2) 2.00 to 4.00 180 secs - - - 1.1 0.0 18.2 0.0 2 50 2 (2) 2.00 to 4.00 300 secs - - - 1.1 0.0 18.3 0.0 2 50 2 (3) 4.00 4.18 2.00 to 4.00</td></td></td></td></td> | <td>50 2 (2) 2.00 to 4.00 15 secs - 50 2 (2) 2.00 to 4.00 30 secs - 50 2 (2) 2.00 to 4.00 30 secs - 50 2 (2) 2.00 to 4.00 60 secs - 50 2 (2) 2.00 to 4.00 90 secs - 50 2 (2) 2.00 to 4.00 120 secs - 50 2 (2) 2.00 to 4.00 180 secs - 50 2 (2) 2.00 to 4.00 180 secs - 50 2 (2) 2.00 to 4.00 300 secs - 50 2 (2) 2.00 to 4.00 05/10/2017 12:49:00 - 50 2 (3) 4.00 2.00 to 4.00 13/10/2017 10:55:00 1007 seak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v. Environment Ltd MDStrace 26/10/17 Contract: <</td> <td>50 2 (2) 2.00 to 4.00 15 secs - - 50 2 (2) 2.00 to 4.00 30 secs - - 50 2 (2) 2.00 to 4.00 60 secs - - 50 2 (2) 2.00 to 4.00 60 secs - - 50 2 (2) 2.00 to 4.00 90 secs - - 50 2 (2) 2.00 to 4.00 120 secs - - 50 2 (2) 2.00 to 4.00 180 secs - - 50 2 (2) 2.00 to 4.00 300 secs - - 50 2 (2) 2.00 to 4.00 300 secs - - 50 2 (3) 4.00 4.18 2.00 to 4.00 13/10/2017 12:49:00 - - 50 3 4.00 2.00 to 4.00 13/10/2017 10:55:00 1007 1007 <td col<="" td=""><td>50 2 (2) 2.00 to 4.00 15 secs - - - 50 2 (2) 2.00 to 4.00 30 secs - - - 50 2 (2) 2.00 to 4.00 60 secs - - - 50 2 (2) 2.00 to 4.00 90 secs - - - 50 2 (2) 2.00 to 4.00 90 secs - - - 50 2 (2) 2.00 to 4.00 120 secs - - - 50 2 (2) 2.00 to 4.00 180 secs - - - 50 2 (2) 2.00 to 4.00 240 secs - - - 50 2 (2) 2.00 to 4.00 05/10/2017 12:49:00 - - - 50 2 (3) 4.00 4.18 2.00 to 4.00 13/10/2017 10:55:00 1007 1007 -1.1₍₀ teak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v. Compiled By</td><td>50 2 (2) 2.00 to 4.00 15 secs - 50 2 (2) 2.00 to 4.00 180 secs - 2.00 to 4.00 300 secs <</td><td>50 2 (2) 2.00 to 4.00 15 secs - - - 1.1 50 2 (2) 2.00 to 4.00 30 secs - - - 1.1 50 2 (2) 2.00 to 4.00 60 secs - - - 1.1 50 2 (2) 2.00 to 4.00 60 secs - - - 1.1 50 2 (2) 2.00 to 4.00 90 secs - - - 1.1 50 2 (2) 2.00 to 4.00 120 secs - - - 1.1 50 2 (2) 2.00 to 4.00 180 secs - - - 1.1 50 2 (2) 2.00 to 4.00 300 secs - - 1.1 50 2 (2) 2.00 to 4.00 300 secs - - 1.1 50 2 (3) 4.00 4.18 2.00 to 4.00 05/10/2017 12:49:00 - - 2.36 - 50 3</td><td>50 2 (2) 2.00 to 4.00 15 secs - - - 1.1 0.0 50 2 (2) 2.00 to 4.00 30 secs - - - 1.1 0.0 50 2 (2) 2.00 to 4.00 60 secs - - 1.1 0.0 50 2 (2) 2.00 to 4.00 90 secs - - 1.1 0.0 50 2 (2) 2.00 to 4.00 90 secs - - 1.1 0.0 50 2 (2) 2.00 to 4.00 120 secs - - 1.1 0.0 50 2 (2) 2.00 to 4.00 180 secs - - 1.1 0.0 50 2 (2) 2.00 to 4.00 240 secs - - 1.1 0.0 50 2 (2) 2.00 to 4.00 300 secs - - 1.1 0.0 50 2 (3) 4.00 4.18 2.00 to 4.00 13/10/2017 12:49:00 - -</td><td>50 2 (2) 2.00 to 4.00 15 secs - - - 1.1 0.0 19.3 50 2 (2) 2.00 to 4.00 30 secs - - - 1.1 0.0 18.4 50 2 (2) 2.00 to 4.00 60 secs - - - 1.1 0.0 18.3 50 2 (2) 2.00 to 4.00 90 secs - - - 1.1 0.0 18.2 50 2 (2) 2.00 to 4.00 10 secs - - - 1.1 0.0 18.2 50 2 (2) 2.00 to 4.00 180 secs - - - 1.1 0.0 18.2 50 2 (2) 2.00 to 4.00 180 secs - - - 1.1 0.0 18.2 50 2 (2) 2.00 to 4.00 300 secs - - - 1.1 0.0 18.2 50 2 (3) 4.00 2.00 to 4.00 05</td><td>50 2 (2) 2 .00 to 4.00 15 secs - - - 1.1 0.0 19.3 0.0 50 2 (2) 2 .00 to 4.00 30 secs - - - 1.1 0.0 18.4 0.0 50 2 (2) 2 .00 to 4.00 60 secs - - - 1.1 0.0 18.4
 0.0 50 2 (2) 2 .00 to 4.00 90 secs - - - 1.1 0.0 18.2 0.0 50 2 (2) 2 .00 to 4.00 120 secs - - - 1.1 0.0 18.2 0.0 50 2 (2) 2 .00 to 4.00 180 secs - - - 1.1 0.0 18.2 0.0 50 2 (2) 2 .00 to 4.00 240 secs - - - 1.1 0.0 18.2 0.0 50 2 (3) 4 .00 2 .00 to 4.00 05/10/2017 12.49:00 - - - - -<!--</td--><td>50 2 (2) 2.00 to 4.00 15 secs - - - 1.1 0.0 19.3 0.0 2 50 2 (2) 2.00 to 4.00 30 secs - - - 1.1 0.0 18.4 0.0 2 50 2 (2) 2.00 to 4.00 60 secs - - - 1.1 0.0 18.3 0.0 2 50 2 (2) 2.00 to 4.00 90 secs - - - 1.1 0.0 18.2 0.0 2 50 2 (2) 2.00 to 4.00 120 secs - - - 1.1 0.0 18.2 0.0 2 50 2 (2) 2.00 to 4.00 180 secs - - - 1.1 0.0 18.2 0.0 2 50 2 (2) 2.00 to 4.00 300 secs - - - 1.1 0.0 18.3 0.0 2 50 2 (3) 4.00 4.18 2.00 to 4.00</td></td></td></td> | 50 2 (2) 2.00 to 4.00 15 secs - 50 2 (2) 2.00 to 4.00 30 secs - 50 2 (2) 2.00 to 4.00 30 secs - 50 2 (2) 2.00 to 4.00 60 secs - 50 2 (2) 2.00 to 4.00 90 secs - 50 2 (2) 2.00 to 4.00 120 secs - 50 2 (2) 2.00 to 4.00 180 secs - 50 2 (2) 2.00 to 4.00 180 secs - 50 2 (2) 2.00 to 4.00 300 secs - 50 2 (2) 2.00 to 4.00 05/10/2017 12:49:00 - 50 2 (3) 4.00 2.00 to 4.00 13/10/2017 10:55:00 1007 seak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v. Environment Ltd MDStrace 26/10/17 Contract: < | 50 2 (2) 2.00 to 4.00 15 secs - - 50 2 (2) 2.00 to 4.00 30 secs - - 50 2 (2) 2.00 to 4.00 60 secs - - 50 2 (2) 2.00 to 4.00 60 secs - - 50 2 (2) 2.00 to 4.00 90 secs - - 50 2 (2) 2.00 to 4.00 120 secs - - 50 2 (2) 2.00 to 4.00 180 secs - - 50 2 (2) 2.00 to 4.00 300 secs - - 50 2 (2) 2.00 to 4.00 300 secs - - 50 2 (3) 4.00 4.18 2.00 to 4.00 13/10/2017 12:49:00 - - 50 3 4.00 2.00 to 4.00 13/10/2017 10:55:00 1007 1007 <td col<="" td=""><td>50 2 (2) 2.00 to 4.00 15 secs - - - 50 2 (2) 2.00 to 4.00 30 secs - - - 50 2 (2) 2.00 to 4.00 60 secs - - - 50 2 (2) 2.00 to 4.00 90 secs - - - 50 2 (2) 2.00 to 4.00 90 secs - - - 50 2 (2) 2.00 to 4.00 120 secs - - - 50 2 (2) 2.00 to 4.00 180 secs - - - 50 2 (2) 2.00 to 4.00 240 secs - - - 50 2 (2) 2.00 to 4.00 05/10/2017 12:49:00 - - - 50 2 (3) 4.00 4.18 2.00 to 4.00 13/10/2017 10:55:00 1007 1007 -1.1₍₀ teak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v. Compiled By</td><td>50 2 (2) 2.00 to 4.00 15 secs - 50 2 (2) 2.00 to 4.00 180 secs - 2.00 to 4.00 300 secs <</td><td>50 2 (2) 2.00 to 4.00 15 secs - - - 1.1 50 2 (2) 2.00 to 4.00 30 secs - - - 1.1 50 2 (2) 2.00 to 4.00 60 secs - - - 1.1 50 2 (2) 2.00 to 4.00 60 secs - - - 1.1 50 2 (2) 2.00 to 4.00 90 secs - - - 1.1 50 2 (2) 2.00 to 4.00 120 secs - - - 1.1 50 2 (2) 2.00 to 4.00 180 secs - - - 1.1 50 2 (2) 2.00 to 4.00 300 secs - - 1.1 50 2 (2) 2.00 to 4.00 300 secs - - 1.1 50 2 (3) 4.00 4.18 2.00 to 4.00 05/10/2017 12:49:00 - - 2.36 - 50 3</td><td>50 2 (2) 2.00 to 4.00 15 secs - - - 1.1 0.0 50 2 (2) 2.00 to 4.00 30 secs - - - 1.1 0.0 50 2 (2) 2.00 to 4.00 60 secs - - 1.1 0.0 50 2 (2) 2.00 to 4.00 90 secs - - 1.1 0.0 50 2 (2) 2.00 to 4.00 90 secs - - 1.1 0.0 50 2 (2) 2.00 to 4.00 120 secs - - 1.1 0.0 50 2 (2) 2.00 to 4.00 180 secs - - 1.1 0.0 50 2 (2) 2.00 to 4.00 240 secs - - 1.1 0.0 50 2 (2) 2.00 to 4.00 300 secs - - 1.1 0.0 50 2 (3) 4.00 4.18 2.00 to 4.00 13/10/2017 12:49:00 - -</td><td>50 2 (2) 2.00 to 4.00 15 secs - - - 1.1 0.0 19.3 50 2 (2) 2.00 to 4.00 30 secs - - - 1.1 0.0 18.4 50 2 (2) 2.00 to 4.00 60 secs - - - 1.1 0.0 18.3 50 2 (2) 2.00 to 4.00 90 secs - - - 1.1 0.0 18.2 50 2 (2) 2.00 to 4.00 10 secs - - - 1.1 0.0 18.2 50 2 (2) 2.00 to 4.00 180 secs - - - 1.1 0.0 18.2 50 2 (2) 2.00 to 4.00 180 secs - - - 1.1 0.0 18.2 50 2 (2) 2.00 to 4.00 300 secs - - - 1.1 0.0 18.2 50 2 (3) 4.00 2.00 to 4.00 05</td><td>50 2 (2) 2 .00 to 4.00 15 secs - - - 1.1 0.0 19.3 0.0 50 2 (2) 2 .00 to 4.00 30 secs - - - 1.1 0.0 18.4 0.0 50 2 (2) 2 .00 to 4.00 60 secs - - - 1.1 0.0 18.4 0.0 50 2 (2) 2 .00 to 4.00 90 secs - - - 1.1 0.0 18.2 0.0 50 2 (2) 2 .00 to 4.00 120 secs - - - 1.1 0.0 18.2 0.0 50 2 (2) 2 .00 to 4.00 180 secs - - - 1.1 0.0 18.2 0.0 50 2 (2) 2 .00 to 4.00 240 secs - - - 1.1 0.0 18.2 0.0 50 2 (3) 4 .00 2 .00 to 4.00 05/10/2017 12.49:00 - - - - -<!--</td--><td>50 2 (2) 2.00 to 4.00 15 secs - - - 1.1 0.0 19.3 0.0 2 50 2 (2) 2.00 to 4.00 30 secs - - - 1.1 0.0 18.4 0.0 2 50 2 (2) 2.00 to 4.00 60 secs - - - 1.1 0.0 18.3 0.0 2 50 2 (2) 2.00 to 4.00 90 secs - - - 1.1 0.0 18.2 0.0 2
50 2 (2) 2.00 to 4.00 120 secs - - - 1.1 0.0 18.2 0.0 2 50 2 (2) 2.00 to 4.00 180 secs - - - 1.1 0.0 18.2 0.0 2 50 2 (2) 2.00 to 4.00 300 secs - - - 1.1 0.0 18.3 0.0 2 50 2 (3) 4.00 4.18 2.00 to 4.00</td></td></td> | <td>50 2 (2) 2.00 to 4.00 15 secs - - - 50 2 (2) 2.00 to 4.00 30 secs - - - 50 2 (2) 2.00 to 4.00 60 secs - - - 50 2 (2) 2.00 to 4.00 90 secs - - - 50 2 (2) 2.00 to 4.00 90 secs - - - 50 2 (2) 2.00 to 4.00 120 secs - - - 50 2 (2) 2.00 to 4.00 180 secs - - - 50 2 (2) 2.00 to 4.00 240 secs - - - 50 2 (2) 2.00 to 4.00 05/10/2017 12:49:00 - - - 50 2 (3) 4.00 4.18 2.00 to 4.00 13/10/2017 10:55:00 1007 1007 -1.1₍₀ teak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v. Compiled By</td> <td>50 2 (2) 2.00 to 4.00 15 secs - 50 2 (2) 2.00 to 4.00 180 secs - 2.00 to 4.00 300 secs <</td> <td>50 2 (2) 2.00 to 4.00 15 secs - - - 1.1 50 2 (2) 2.00 to 4.00 30 secs - - - 1.1 50 2 (2) 2.00 to 4.00 60 secs - - - 1.1 50 2 (2) 2.00 to 4.00 60 secs - - - 1.1 50 2 (2) 2.00 to 4.00 90 secs - - - 1.1 50 2 (2) 2.00 to 4.00 120 secs - - - 1.1 50 2 (2) 2.00 to 4.00 180 secs - - - 1.1 50 2 (2) 2.00 to 4.00 300 secs - - 1.1 50 2 (2) 2.00 to 4.00 300 secs - - 1.1 50 2 (3) 4.00 4.18 2.00 to 4.00 05/10/2017 12:49:00 - - 2.36 - 50 3</td> <td>50 2 (2) 2.00 to 4.00 15 secs - - - 1.1 0.0 50 2 (2) 2.00 to 4.00 30 secs - - - 1.1 0.0 50 2 (2) 2.00 to 4.00 60 secs - - 1.1 0.0 50 2 (2) 2.00 to 4.00 90 secs - - 1.1 0.0 50 2 (2) 2.00 to 4.00 90 secs - - 1.1 0.0 50 2 (2) 2.00 to 4.00 120 secs - - 1.1 0.0 50 2 (2) 2.00 to 4.00 180 secs - - 1.1 0.0 50 2 (2) 2.00 to 4.00 240 secs - - 1.1 0.0 50 2 (2) 2.00 to 4.00 300 secs - - 1.1 0.0 50 2 (3) 4.00 4.18 2.00 to 4.00 13/10/2017 12:49:00 - -</td> <td>50 2 (2) 2.00 to 4.00 15 secs - - - 1.1 0.0 19.3 50 2 (2) 2.00 to 4.00 30 secs - - - 1.1 0.0 18.4 50 2 (2) 2.00 to 4.00 60 secs - - - 1.1 0.0 18.3 50 2 (2) 2.00 to 4.00 90 secs - - - 1.1 0.0 18.2 50 2 (2) 2.00 to 4.00 10 secs - - - 1.1 0.0 18.2 50 2 (2) 2.00 to 4.00 180 secs - - - 1.1 0.0 18.2 50 2 (2) 2.00 to 4.00 180 secs - - - 1.1 0.0 18.2 50 2 (2) 2.00 to 4.00 300 secs - - - 1.1 0.0 18.2 50 2 (3) 4.00 2.00 to 4.00 05</td> <td>50 2 (2) 2 .00 to 4.00 15 secs - - - 1.1 0.0 19.3 0.0 50 2 (2) 2 .00 to 4.00 30 secs - - - 1.1 0.0 18.4 0.0 50 2 (2) 2 .00 to 4.00 60 secs - - - 1.1 0.0 18.4 0.0 50 2 (2) 2 .00 to 4.00 90 secs - - - 1.1 0.0 18.2 0.0 50 2 (2) 2 .00 to 4.00 120 secs - - - 1.1 0.0 18.2 0.0 50 2 (2) 2 .00 to 4.00 180 secs - - - 1.1 0.0 18.2 0.0 50 2 (2) 2 .00 to 4.00 240 secs - - - 1.1 0.0 18.2 0.0 50 2 (3) 4 .00 2 .00 to 4.00 05/10/2017 12.49:00 - - - - -<!--</td--><td>50 2 (2) 2.00 to 4.00 15 secs - - - 1.1 0.0 19.3 0.0 2 50 2 (2) 2.00 to 4.00 30 secs - - - 1.1 0.0 18.4 0.0 2 50 2 (2) 2.00 to 4.00 60 secs - - - 1.1 0.0 18.3 0.0 2 50 2 (2) 2.00 to 4.00 90 secs - - - 1.1 0.0 18.2 0.0 2 50 2 (2) 2.00 to 4.00 120 secs - - - 1.1 0.0 18.2 0.0 2 50 2 (2) 2.00 to 4.00 180 secs - - - 1.1 0.0 18.2 0.0 2 50 2 (2) 2.00 to 4.00 300 secs - - - 1.1 0.0 18.3 0.0 2 50 2 (3) 4.00 4.18 2.00 to 4.00</td></td> | 50 2 (2) 2.00 to 4.00 15 secs - - - 50 2 (2) 2.00 to 4.00 30 secs - - - 50 2 (2) 2.00 to 4.00 60 secs - - - 50 2 (2) 2.00 to 4.00 90 secs - - - 50 2 (2) 2.00 to 4.00 90 secs - - - 50 2 (2) 2.00 to 4.00 120 secs - - - 50 2 (2) 2.00 to 4.00 180 secs - - - 50 2 (2) 2.00 to 4.00 240 secs - - - 50 2 (2) 2.00 to 4.00 05/10/2017 12:49:00 - - - 50 2 (3) 4.00 4.18 2.00 to 4.00 13/10/2017 10:55:00 1007 1007 -1.1 ₍₀ teak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v. Compiled By | 50 2 (2) 2.00 to 4.00 15 secs - 50 2 (2) 2.00 to 4.00 180 secs - 2.00 to 4.00 300 secs < | 50 2 (2) 2.00 to 4.00 15 secs - - - 1.1 50 2 (2) 2.00 to 4.00 30 secs - - - 1.1 50 2 (2) 2.00 to 4.00 60 secs - - - 1.1 50 2 (2) 2.00 to 4.00 60 secs - - - 1.1 50 2 (2) 2.00 to 4.00 90 secs - - - 1.1 50 2 (2) 2.00 to 4.00 120 secs - - - 1.1 50 2 (2) 2.00 to 4.00 180 secs - - - 1.1 50 2 (2) 2.00 to 4.00 300 secs - - 1.1 50 2 (2) 2.00 to 4.00 300 secs - - 1.1 50
 2 (3) 4.00 4.18 2.00 to 4.00 05/10/2017 12:49:00 - - 2.36 - 50 3 | 50 2 (2) 2.00 to 4.00 15 secs - - - 1.1 0.0 50 2 (2) 2.00 to 4.00 30 secs - - - 1.1 0.0 50 2 (2) 2.00 to 4.00 60 secs - - 1.1 0.0 50 2 (2) 2.00 to 4.00 90 secs - - 1.1 0.0 50 2 (2) 2.00 to 4.00 90 secs - - 1.1 0.0 50 2 (2) 2.00 to 4.00 120 secs - - 1.1 0.0 50 2 (2) 2.00 to 4.00 180 secs - - 1.1 0.0 50 2 (2) 2.00 to 4.00 240 secs - - 1.1 0.0 50 2 (2) 2.00 to 4.00 300 secs - - 1.1 0.0 50 2 (3) 4.00 4.18 2.00 to 4.00 13/10/2017 12:49:00 - - | 50 2 (2) 2.00 to 4.00 15 secs - - - 1.1 0.0 19.3 50 2 (2) 2.00 to 4.00 30 secs - - - 1.1 0.0 18.4 50 2 (2) 2.00 to 4.00 60 secs - - - 1.1 0.0 18.3 50 2 (2) 2.00 to 4.00 90 secs - - - 1.1 0.0 18.2 50 2 (2) 2.00 to 4.00 10 secs - - - 1.1 0.0 18.2 50 2 (2) 2.00 to 4.00 180 secs - - - 1.1 0.0 18.2 50 2 (2) 2.00 to 4.00 180 secs - - - 1.1 0.0 18.2 50 2 (2) 2.00 to 4.00 300 secs - - - 1.1 0.0 18.2 50 2 (3) 4.00 2.00 to 4.00 05 | 50 2 (2) 2 .00 to 4.00 15 secs - - - 1.1 0.0 19.3 0.0 50 2 (2) 2 .00 to 4.00 30 secs - - - 1.1 0.0 18.4 0.0 50 2 (2) 2 .00 to 4.00 60 secs - - - 1.1 0.0 18.4 0.0 50 2 (2) 2 .00 to 4.00 90 secs - - - 1.1 0.0 18.2 0.0 50 2 (2) 2 .00 to 4.00 120 secs - - - 1.1 0.0 18.2 0.0 50 2 (2) 2 .00 to 4.00 180 secs - - - 1.1 0.0 18.2 0.0 50 2 (2) 2 .00 to 4.00 240 secs - - - 1.1 0.0 18.2 0.0 50 2 (3) 4 .00 2 .00 to 4.00 05/10/2017 12.49:00 - - - - - </td <td>50 2 (2) 2.00 to 4.00 15 secs - - - 1.1 0.0 19.3 0.0 2 50 2 (2) 2.00 to 4.00 30 secs - - - 1.1 0.0 18.4 0.0 2 50 2 (2) 2.00 to 4.00 60 secs - - - 1.1 0.0 18.3 0.0 2 50 2 (2) 2.00 to 4.00 90 secs - - - 1.1 0.0 18.2 0.0 2 50 2 (2) 2.00 to 4.00 120 secs - - - 1.1 0.0 18.2 0.0 2 50 2 (2) 2.00 to 4.00 180 secs - - - 1.1 0.0 18.2 0.0 2 50 2 (2) 2.00 to 4.00 300 secs - - - 1.1 0.0 18.3 0.0 2 50 2 (3) 4.00 4.18 2.00 to 4.00</td> | 50 2 (2) 2.00 to 4.00 15 secs - - - 1.1 0.0 19.3 0.0 2 50 2 (2) 2.00 to 4.00 30 secs - - - 1.1 0.0 18.4 0.0 2 50 2 (2) 2.00 to 4.00 60 secs - - - 1.1 0.0 18.3 0.0 2 50 2 (2) 2.00 to 4.00 90 secs - - - 1.1 0.0 18.2 0.0 2 50 2 (2) 2.00 to 4.00 120 secs - - - 1.1 0.0 18.2 0.0 2 50 2 (2) 2.00 to 4.00 180 secs - - - 1.1 0.0 18.2 0.0 2 50 2 (2) 2.00 to 4.00 300 secs - - - 1.1 0.0 18.3 0.0 2 50 2 (3) 4.00 4.18 2.00 to 4.00 |

[Pressures] Previous During

<u>Start</u>

<u>End</u>

Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS06	1	50	3			2.00 to 4.00	30 secs	-	-	-0.1 _(SS)	-	-	-	-	-	-	-
WS06	1	50	3 (2)	4.00		2.00 to 4.00	13/10/2017 10:56:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS06	1	50	3 (2)			2.00 to 4.00	15 secs	-	-	-	-	0.9	0.0	19.7	0.0	2	0
WS06	1	50	3 (2)			2.00 to 4.00	30 secs	-	-	-	-	1.0	0.0	18.8	0.0	3	0
WS06	1	50	3 (2)			2.00 to 4.00	60 secs	-	-	-	-	1.0	0.0	18.7	0.0	3	0
WS06	1	50	3 (2)			2.00 to 4.00	90 secs	-	-	-	-	1.0	0.0	18.7	0.0	3	0
WS06	1	50	3 (2)			2.00 to 4.00	120 secs	-	-	-	-	1.0	0.0	18.7	0.0	3	0
WS06	1	50	3 (2)			2.00 to 4.00	180 secs	-	-	-	-	1.0	0.0	18.6	0.0	3	0
WS06	1	50	3 (2)			2.00 to 4.00	240 secs	-	-	-	-	1.0	0.0	18.6	0.0	3	0
WS06	1	50	3 (2)			2.00 to 4.00	300 secs	-	-	-	-	1.0	0.0	18.6	0.0	3	0
WS06	1	50	3 (3)	4.00	4.17	2.00 to 4.00	13/10/2017 11:02:00	-	-	-	2.40	-	-	-	-	-	-
WS06	1	50	4	4.00		2.00 to 4.00	19/10/2017 11:35:00	996	996	0.1 _(l)	-	-	-	-	-	-	-
WS06	1	50	4			2.00 to 4.00	30 secs	-	-	0.1 _(SS)	-	-	-	-	-	-	-
WS06	1	50	4 (2)	4.00		2.00 to 4.00	19/10/2017 11:36:00	-	-	-	-	0.1	0.0	20.9	-	0	0
WS06	1	50	4 (2)			2.00 to 4.00	15 secs	-	-	-	-	1.4	0.0	20.2	-	0	0
WS06	1	50	4 (2)			2.00 to 4.00	30 secs	-	-	-	-	1.4	0.0	18.7	-	0	0
WS06	1	50	4 (2)			2.00 to 4.00	60 secs	-	-	-	-	1.4	0.0	18.6	-	0	0
WS06	1	50	4 (2)			2.00 to 4.00	90 secs	-	-	-	-	1.4	0.0	18.6	-	0	0
ey: I = Initial, F	e Peak	k, SS = Ste	eady State. No	ote: LEL = Lo	wer Explosive	e Limit = 5% v/v.											
		nviron	ment Ltd		Compiled E	Sy	Date		Chec	ked By			Date	Contra	act Ref:		
	A	bbey P	Park	n	DStreak	e	26/10/17									31358	3
		mber F Covent CV3 44	try	Contract:			Roade	Bypass						Page:	3	30 of	48 A

[Pressures] Previous During

End Equipment Used & Remarks

Start

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone		Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS06	1	50	4 (2)			2.00 to 4.00	120 secs	-	-	-	-	1.4	0.0	18.6	-	0	0
WS06	1	50	4 (2)			2.00 to 4.00	180 secs	-	-	-	-	1.4	0.0	18.7	-	0	0
WS06	1	50	4 (2)			2.00 to 4.00	240 secs	-	-	-	-	1.3	0.0	18.7	-	0	0
WS06	1	50	4 (2)			2.00 to 4.00	300 secs	-	-	-	-	1.3	0.0	18.7	-	0	0
WS06	1	50	4 (2)			2.00 to 4.00	360 secs	-	-	-	-	1.3	0.0	18.8	-	0	0
WS06	1	50	4 (3)	4.00	4.29	2.00 to 4.00	19/10/2017 11:43:00	-	-	-	2.62	-	-	-	-	-	-
WS07	1	50	1	2.50		1.00 to 2.50	28/09/2017	1008	1008	-0.1 _(I)	-	-	-	-	-	-	-
WS07	1	50	1			1.00 to 2.50	30 secs	-	-	-0.1 _(SS)	-	-	-	-	-	-	-
WS07	1	50	1 (2)	2.50		1.00 to 2.50	28/09/2017 00:01:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS07	1	50	1 (2)			1.00 to 2.50	15 secs	-	-	-	-	1.4	0.0	17.2	0.0	1	0
WS07	1	50	1 (2)			1.00 to 2.50	30 secs	-	-	-	-	1.4	0.0	14.0	0.0	0	0
WS07	1	50	1 (2)			1.00 to 2.50	60 secs	-	-	-	-	1.4	0.0	13.7	0.0	0	0
WS07	1	50	1 (2)			1.00 to 2.50	90 secs	-	-	-	-	1.4	0.0	13.7	0.0	0	0
WS07	1	50	1 (2)			1.00 to 2.50	120 secs	-	-	-	-	1.4	0.0	13.7	0.0	0	0
WS07	1	50	1 (2)			1.00 to 2.50	180 secs	-	-	-	-	1.4	0.0	13.6	0.0	0	0
WS07	1	50	1 (2)			1.00 to 2.50	240 secs	-	-	-	-	1.4	0.0	13.5	0.0	0	0
WS07	1	50	1 (2)			1.00 to 2.50	300 secs	-	-	-	-	1.4	0.0	13.5	0.0	0	0

Contract Ref: Compiled By Date Checked By Date RSK Environment Ltd Mostrewije 313583 Abbey Park Humber Road 26/10/17 Contract: Page: Coventry **Roade Bypass 31** of **48** AGS CV3 4AQ

[Pressures] Previous During

<u>Start</u>

<u>End</u>

Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS07	1	50	1 (3)	2.50	2.53	1.00 to 2.50	28/09/2017 00:07:00	-	-	-	1.91	-	-	-	-	-	-
WS07	1	50	2	2.50		1.00 to 2.50	05/10/2017 12:25:00	1008	1008	0.1 _(l)	-	-	-	-	-	-	-
WS07	1	50	2			1.00 to 2.50	30 secs	-	-	0.1 _(SS)	-	-	-	-	-	-	-
WS07	1	50	2 (2)	2.50		1.00 to 2.50	05/10/2017 12:26:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS07	1	50	2 (2)			1.00 to 2.50	15 secs	-	-	I	-	1.8	0.0	17.3	0.0	0	0
WS07	1	50	2 (2)			1.00 to 2.50	30 secs	-	-	-	-	1.8	0.0	12.9	0.0	0	0
WS07	1	50	2 (2)			1.00 to 2.50	60 secs	-	-	-	-	1.8	0.0	12.5	0.0	0	0
WS07	1	50	2 (2)			1.00 to 2.50	90 secs	-	-	-	-	1.8	0.0	12.5	0.0	0	0
WS07	1	50	2 (2)			1.00 to 2.50	120 secs	-	-	-	-	1.8	0.0	12.5	0.0	0	0
WS07	1	50	2 (2)			1.00 to 2.50	180 secs	-	-	-	-	1.8	0.0	12.5	0.0	0	0
WS07	1	50	2 (2)			1.00 to 2.50	240 secs	-	-	-	-	1.8	0.0	12.4	0.0	0	0
WS07	1	50	2 (2)			1.00 to 2.50	300 secs	-	-	-	-	1.8	0.0	12.5	0.0	0	0
WS07	1	50	2 (3)	2.50	2.54	1.00 to 2.50	05/10/2017 12:32:00	-	-	-	1.94	-	-	-	-	-	-
WS07	1	50	3	2.50		1.00 to 2.50	13/10/2017 10:45:00	1007	1007	0.0 _(l)	-	-	-	-	-	-	-
WS07	1	50	3			1.00 to 2.50	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS07	1	50	3 (2)	2.50		1.00 to 2.50	13/10/2017 10:46:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS07	1	50	3 (2)			1.00 to 2.50	15 secs	-	-	-	-	1.8	0.0	18.1	0.0	0	0
WS07	1	50	3 (2)			1.00 to 2.50	30 secs	-	-	-	-	1.9	0.0	15.4	0.0	0	0
ey: I = Initial, F	P = Pea	k, SS = Ste	eady State. No	ote: LEL = Lo		e Limit = 5% v/v.	-							Queste			
F	RSK E	Inviron	ment Ltd		Compiled B	,	Date		Cheo	ked By			Date		act Ref:		_
CV		bbey F		n	DStrews	S	26/10/17									31358	3
SA		imber F Covent CV3 4/	try	Contract:			Roade	Bypass				L		Page:		32 of	48

AGS

[Pressures] Previous During

End Equipment Used & Remarks

<u>Start</u>

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydroger Sulphide (ppm)
WS07	1	50	3 (2)			1.00 to 2.50	60 secs	-	-	-	-	1.9	0.0	15.1	0.0	0	0
WS07	1	50	3 (2)			1.00 to 2.50	90 secs	-	-	-	-	1.9	0.0	15.0	0.0	0	0
WS07	1	50	3 (2)			1.00 to 2.50	120 secs	-	-	-	-	1.9	0.0	15.0	0.0	0	0
WS07	1	50	3 (2)			1.00 to 2.50	180 secs	-	-	-	-	1.9	0.0	15.1	0.0	0	0
WS07	1	50	3 (2)			1.00 to 2.50	240 secs	-	-	-	-	1.9	0.0	15.1	0.0	0	0
WS07	1	50	3 (2)			1.00 to 2.50	300 secs	-	-	-	-	1.9	0.0	15.1	0.0	0	0
WS07	1	50	3 (3)	2.50	2.54	1.00 to 2.50	13/10/2017 10:52:00	-	-	-	2.05	-	-	-	-	-	-
WS07	1	50	4	2.50		1.00 to 2.50	19/10/2017 11:26:00	996	996	0.3 _(I)	-	-	-	-	-	-	-
WS07	1	50	4			1.00 to 2.50	15 secs	-	-	0.3 _(SS)	-	-	-	-	-	-	-
WS07	1	50	4 (2)	2.50		1.00 to 2.50	19/10/2017 11:26:30	-	-	-	-	0.1	0.0	20.8	-	0	0
WS07	1	50	4 (2)			1.00 to 2.50	30 secs	-	-	-	-	1.9	0.0	19.5	-	0	0
WS07	1	50	4 (2)			1.00 to 2.50	60 secs	-	-	-	-	1.8	0.0	17.1	-	0	0
WS07	1	50	4 (2)			1.00 to 2.50	90 secs	-	-	-	-	1.8	0.0	17.1	-	0	0
WS07	1	50	4 (2)			1.00 to 2.50	120 secs	-	-	-	-	1.8	0.0	17.1	-	0	0
WS07	1	50	4 (2)			1.00 to 2.50	150 secs	-	-	-	-	1.8	0.0	17.1	-	0	0
WS07	1	50	4 (2)			1.00 to 2.50	210 secs	-	-	-	-	1.8	0.0	17.1	-	0	0
WS07	1	50	4 (2)			1.00 to 2.50	270 secs	-	-	-	-	1.8	0.0	17.2	-	0	0
WS07	1	50	4 (2)			1.00 to 2.50	330 secs	-	-	-	-	1.8	0.0	17.2	-	0	0

	RSK Environment Ltd	Compiled By	Date	Checked By	Date	Contract Ref:			
DCK	Abbey Park	Mostreukje	26/10/17			3	13583	3	
	Humber Road	Contract:		•		Page:			
	Coventry CV3 4AQ		Roade	Bypass		33	of	48	AGS

[Pressures] Previous During

<u>Start</u>

<u>End</u>

Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS07	1	50	4 (3)	2.50	2.54	1.00 to 2.50	19/10/2017 11:33:00	-	-	-	2.07	-	-	-	-	-	-
WS08	1	50	1	3.00		1.00 to 3.00	28/09/2017	1008	1008	0.0(1)	-	-	-	-	-	-	-
WS08	1	50	1			1.00 to 3.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS08	1	50	1 (2)	3.00		1.00 to 3.00	28/09/2017 00:01:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS08	1	50	1 (2)			1.00 to 3.00	15 secs	-	-	-	-	2.4	0.0	18.0	0.0	2	0
WS08	1	50	1 (2)			1.00 to 3.00	30 secs	-	-	-	-	2.4	0.0	15.3	0.0	0	0
WS08	1	50	1 (2)			1.00 to 3.00	60 secs	-	-	-	-	2.5	0.0	15.1	0.0	0	0
WS08	1	50	1 (2)			1.00 to 3.00	90 secs	-	-	-	-	2.5	0.0	15.0	0.0	0	0
WS08	1	50	1 (2)			1.00 to 3.00	120 secs	-	-	-	-	2.4	0.0	15.0	0.0	0	0
WS08	1	50	1 (2)			1.00 to 3.00	180 secs	-	-	-	-	2.4	0.0	14.9	0.0	0	0
WS08	1	50	1 (2)			1.00 to 3.00	240 secs	-	-	-	-	2.4	0.0	14.8	0.0	0	0
WS08	1	50	1 (2)			1.00 to 3.00	300 secs	-	-	-	-	2.4	0.0	14.8	0.0	0	0
WS08	1	50	1 (3)	3.00	3.10	1.00 to 3.00	28/09/2017 00:07:00	-	-	-	2.65	-	-	-	-	-	-
WS08	1	50	2	3.00		1.00 to 3.00	05/10/2017 12:15:00	1008	1008	0.0 _(I)	-	-	-	-	-	-	-
WS08	1	50	2			1.00 to 3.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS08	1	50	2 (2)	3.00		1.00 to 3.00	05/10/2017 12:16:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS08	1	50	2 (2)			1.00 to 3.00	15 secs	-	-	-	-	1.8	0.0	20.1	0.0	1	0
ey: I = Initial, P	e Peak	k, SS = Ste	eady State. No	ote: LEL = Lo	wer Explosiv	e Limit = 5% v/v.											
D		nviron	ment Ltd		Compiled E	Зу	Date		Chec	ked By			Date	Contra	act Ref:		
	A	bbey P	ark	M	DStrewky	e	26/10/17									31358	3
	Hu	mber F Covent CV3 4A	Road try	Contract:			Roade	Bypass						Page:		34 of	48

[Pressures] Previous During

<u>Start</u>

<u>End</u>

Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS08	1	50	2 (2)			1.00 to 3.00	30 secs	-	-	-	-	1.8	0.0	19.5	0.0	0	0
WS08	1	50	2 (2)			1.00 to 3.00	60 secs	-	-	-	-	1.8	0.0	19.4	0.0	0	0
WS08	1	50	2 (2)			1.00 to 3.00	90 secs	-	-	-	-	1.8	0.0	19.4	0.0	0	0
WS08	1	50	2 (2)			1.00 to 3.00	120 secs	-	-	-	-	1.8	0.0	19.4	0.0	0	0
WS08	1	50	2 (2)			1.00 to 3.00	180 secs	-	-	-	-	1.8	0.0	19.4	0.0	0	0
WS08	1	50	2 (2)			1.00 to 3.00	240 secs	-	-	-	-	1.8	0.0	19.4	0.0	0	0
WS08	1	50	2 (2)			1.00 to 3.00	300 secs	-	-	-	-	1.8	0.0	19.4	0.0	0	0
WS08	1	50	2 (3)	3.00	3.09	1.00 to 3.00	05/10/2017 12:22:00	-	-	-	2.66	-	-	-	-	-	-
WS08	1	50	3	3.00		1.00 to 3.00	13/10/2017 13:35:00	1007	1007	0.0 _(l)	-	-	-	-	-	-	-
WS08	1	50	3			1.00 to 3.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS08	1	50	3 (2)	3.00		1.00 to 3.00	13/10/2017 13:36:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS08	1	50	3 (2)			1.00 to 3.00	15 secs	-	-	-	-	1.8	0.0	19.7	0.0	0	0
WS08	1	50	3 (2)			1.00 to 3.00	30 secs	-	-	-	-	1.8	0.0	18.9	0.0	0	0
WS08	1	50	3 (2)			1.00 to 3.00	60 secs	-	-	-	-	1.8	0.0	18.8	0.0	0	0
WS08	1	50	3 (2)			1.00 to 3.00	90 secs	-	-	-	-	1.9	0.0	18.8	0.0	0	0
WS08	1	50	3 (2)			1.00 to 3.00	120 secs	-	-	-	-	1.9	0.0	18.8	0.0	0	0
WS08	1	50	3 (2)			1.00 to 3.00	180 secs	-	-	-	-	1.9	0.0	18.8	0.0	0	0
WS08	1	50	3 (2)			1.00 to 3.00	240 secs	-	-	-	-	1.9	0.0	18.8	0.0	0	0
ey: I = Initial, P	= Peal	k, SS = Ste	eady State. No	ote: LEL = Lo		e Limit = 5% v/v.								Contro	act Ref:		
R	SK E	nvironi	ment Ltd		Compiled B		Date		Chec	ked By			Date		act Ref:		-
		bbey P		i ni	DStreaks	S	26/10/17									31358	3
		mber F Covent CV3 44	try	Contract:		l l	Roade	Bypass						Page:	3	35 of	48

[Pressures] Previous During

<u>Start</u>

<u>End</u>

Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressurel (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS08	1	50	3 (2)			1.00 to 3.00	300 secs	-	-	-	-	1.9	0.0	18.8	0.0	0	0
WS08	1	50	3 (3)	3.00	3.09	1.00 to 3.00	13/10/2017 13:42:00	-	-	-	2.68	-	-	-	-	-	-
WS08	1	50	4	3.00		1.00 to 3.00	19/10/2017 11:17:00	996	996	0.1 _(l)	-	-	-	-	-	-	-
WS08	1	50	4			1.00 to 3.00	15 secs	-	-	0.1 _(SS)	-	-	-	-	-	-	-
WS08	1	50	4 (2)	3.00		1.00 to 3.00	19/10/2017 11:17:30	-	-	-	-	0.1	0.0	20.9	-	0	0
WS08	1	50	4 (2)			1.00 to 3.00	30 secs	-	-	-	-	2.3	0.0	18.3	-	1	0
WS08	1	50	4 (2)			1.00 to 3.00	60 secs	-	-	-	-	2.1	0.0	16.9	-	1	0
WS08	1	50	4 (2)			1.00 to 3.00	90 secs	-	-	-	-	2.1	0.0	16.9	-	1	0
WS08	1	50	4 (2)			1.00 to 3.00	120 secs	-	-	-	-	2.1	0.0	17.0	-	1	0
WS08	1	50	4 (2)			1.00 to 3.00	150 secs	-	-	-	-	2.1	0.0	17.0	-	1	0
WS08	1	50	4 (2)			1.00 to 3.00	210 secs	-	-	-	-	2.1	0.0	17.1	-	1	0
WS08	1	50	4 (2)			1.00 to 3.00	270 secs	-	-	-	-	2.1	0.0	17.2	-	1	0
WS08	1	50	4 (2)			1.00 to 3.00	330 secs	-	-	-	-	2.1	0.0	17.3	-	1	0
WS08	1	50	4 (3)	3.00	3.09	1.00 to 3.00	19/10/2017 11:24:00	-	-	-	2.70	-	-	-	-	-	-
WS09	1	50	1	3.00		1.00 to 3.00	28/09/2017 13:13:00	1006	1006	0.1 _(I)	-	-	-	-	-	-	-
WS09	1	50	1			1.00 to 3.00	30 secs	-	-	0.1 _(SS)	-	-	-	-	-	-	-
WS09	1	50	1 (2)	3.00		1.00 to 3.00	28/09/2017 13:14:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
y: I = Initial, P	e Peak	k, SS = Ste	eady State. No	ote: LEL = Lo	wer Explosive	e Limit = 5% v/v.											
R	SK F	nviron	ment Ltd		Compiled B	y	Date		Chec	ked By			Date	Contra	act Ref:		
	-	bbey P		n	DStrewky	S	26/10/17									31358	3
	Hu	mber F Covent CV3 44	Road try	Contract:			Roade	Bypass				I		Page:		36 of	48

GINT_LIBRARY_V8_06.GLB : E - GAS MON - STANDARD - 6B - A4L : 313583 - ROADE BYPASS.GPJ : 26/10/17 09:46 : MS4 :

[Pressures] Previous During

<u>Start</u>

<u>End</u>

Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS09	1	50	1 (2)			1.00 to 3.00	15 secs	-	-	-	-	1.0	0.0	19.6	0.0	0	0
WS09	1	50	1 (2)			1.00 to 3.00	30 secs	-	-	-	-	0.9	0.0	19.4	0.0	0	0
WS09	1	50	1 (2)			1.00 to 3.00	60 secs	-	-	-	-	0.9	0.0	19.4	0.0	0	0
WS09	1	50	1 (2)			1.00 to 3.00	90 secs	-	-	-	-	0.9	0.0	19.4	0.0	0	0
WS09	1	50	1 (2)			1.00 to 3.00	120 secs	-	-	-	-	0.9	0.0	19.4	0.0	0	0
WS09	1	50	1 (2)			1.00 to 3.00	180 secs	-	-	-	-	0.9	0.0	19.4	0.0	0	0
WS09	1	50	1 (2)			1.00 to 3.00	240 secs	-	-	-	-	0.9	0.0	19.5	0.0	0	0
WS09	1	50	1 (2)			1.00 to 3.00	300 secs	-	-	-	-	0.9	0.0	19.5	0.0	0	0
WS09	1	50	1 (3)	3.00	3.07	1.00 to 3.00	28/09/2017 13:20:00	-	-	-	DRY	-	-	-	-	-	-
WS09	1	50	2	3.00		1.00 to 3.00	06/10/2017 12:47:00	1003	1003	0.0 _(I)	-	-	-	-	-	-	-
WS09	1	50	2			1.00 to 3.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS09	1	50	2 (2)	3.00		1.00 to 3.00	06/10/2017 12:48:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS09	1	50	2 (2)			1.00 to 3.00	15 secs	-	-	-	-	0.5	0.0	20.3	0.0	0	0
WS09	1	50	2 (2)			1.00 to 3.00	30 secs	-	-	-	-	0.5	0.0	20.2	0.0	0	0
WS09	1	50	2 (2)			1.00 to 3.00	60 secs	-	-	-	-	0.5	0.0	20.2	0.0	0	1
WS09	1	50	2 (2)			1.00 to 3.00	90 secs	-	-	-	-	0.5	0.0	20.2	0.0	0	1
WS09	1	50	2 (2)			1.00 to 3.00	120 secs	-	-	-	-	0.5	0.0	20.2	0.0	0	1
WS09	1	50	2 (2)			1.00 to 3.00	180 secs	-	-	-	-	0.5	0.0	20.2	0.0	0	1
y: I = Initial, P	= Peak	k, SS = Ste	eady State. No	ote: LEL = Lo	wer Explosive	e Limit = 5% v/v.										·	
R	SK F	nviron	ment Ltd		Compiled B	у	Date		Chec	ked By			Date	Contra	act Ref:		
	-	bbey P		n	DStreaks	S	26/10/17									31358	3
SN	Hu	mbér F Covent	Road	Contract:			Roade	Bunana						Page:		37 of	48

[Pressures] Previous During

End Equipment Used & Remarks

<u>Start</u>

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydroge Sulphide (ppm)
WS09	1	50	2 (2)			1.00 to 3.00	240 secs	-	-	-	-	0.5	0.0	20.2	0.0	0	1
WS09	1	50	2 (2)			1.00 to 3.00	300 secs	-	-	-	-	0.5	0.0	20.2	0.0	0	1
WS09	1	50	2 (3)	3.00	3.07	1.00 to 3.00	06/10/2017 12:54:00	-	-	-	DRY	-	-	-	-	-	-
WS09	1	50	3	3.00		1.00 to 3.00	13/10/2017 11:45:00	1010	1010	0.0 _(I)	-	-	-	-	-	-	-
WS09	1	50	3			1.00 to 3.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS09	1	50	3 (2)	3.00		1.00 to 3.00	13/10/2017 11:46:00	-	-	-	-	0.1	0.0	20.9	-	0	0
WS09	1	50	3 (2)			1.00 to 3.00	60 secs	-	-	-	-	0.6	0.0	20.8	-	0	0
WS09	1	50	3 (2)			1.00 to 3.00	90 secs	-	-	-	-	0.5	0.0	20.4	-	0	0
WS09	1	50	3 (2)			1.00 to 3.00	120 secs	-	-	-	-	0.5	0.0	20.4	-	0	0
WS09	1	50	3 (2)			1.00 to 3.00	180 secs	-	-	-	-	0.5	0.0	20.4	-	0	0
WS09	1	50	3 (2)			1.00 to 3.00	210 secs	-	-	-	-	0.5	0.0	20.4	-	0	0
WS09	1	50	3 (2)			1.00 to 3.00	240 secs	-	-	-	-	0.5	0.0	20.4	-	0	0
WS09	1	50	3 (2)			1.00 to 3.00	300 secs	-	-	-	-	0.5	0.0	20.4	-	0	0
WS09	1	50	3 (2)			1.00 to 3.00	360 secs	-	-	-	-	0.5	0.0	20.4	-	0	0
WS09	1	50	3 (2)			1.00 to 3.00	420 secs	-	-	-	-	0.5	0.0	20.4	-	0	0
WS09	1	50	3 (3)	3.00	3.09	1.00 to 3.00	13/10/2017 11:56:00	-	-	-	3.09	-	-	-	-	-	-
WS09	1	50	4	3.00		1.00 to 3.00	19/10/2017 12:13:00	994	994	0.0 _(I)	-	-	-	-	-	-	-
WS09	1	50	4			1.00 to 3.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

	RSK Environment Ltd	Compiled By	Date	Checked By	Date	Contract Ref:			
DCK	Abbey Park	Mostrewiger	26/10/17] :	313583		
	Humber Road	Contract:	•		•	Page:			
	Coventry CV3 4AQ		Roade	Bypass		38	of	48	AGS

[Pressures] Previous During

<u>Start</u>

<u>End</u>

Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS09	1	50	4 (2)	3.00		1.00 to 3.00	19/10/2017 12:13:45	-	-	-	-	0.1	0.0	20.9	-	0	0
WS09	1	50	4 (2)			1.00 to 3.00	15 secs	-	-	-	-	1.0	0.0	20.3	-	0	0
WS09	1	50	4 (2)			1.00 to 3.00	75 secs	-	-	-	-	1.0	0.0	18.5	-	0	0
WS09	1	50	4 (2)			1.00 to 3.00	105 secs	-	-	-	-	1.0	0.0	18.5	-	0	0
WS09	1	50	4 (2)			1.00 to 3.00	135 secs	-	-	-	-	1.0	0.0	18.5	-	0	0
WS09	1	50	4 (2)			1.00 to 3.00	165 secs	-	-	-	-	1.0	0.0	18.5	-	0	0
WS09	1	50	4 (2)			1.00 to 3.00	195 secs	-	-	-	-	1.0	0.0	18.5	-	0	0
WS09	1	50	4 (2)			1.00 to 3.00	255 secs	-	-	-	-	1.0	0.0	18.5	-	0	0
WS09	1	50	4 (2)			1.00 to 3.00	315 secs	-	-	-	-	1.0	0.0	18.5	-	0	0
WS09	1	50	4 (3)	3.00	3.08	1.00 to 3.00	19/10/2017 12:21:00	-	-	-	3.08	-	-	-	-	-	-
WS10	1	50	1	4.00		2.00 to 4.00	28/09/2017	1006	1006	0.0 _(I)	-	-	-	-	-	-	-
WS10	1	50	1			2.00 to 4.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS10	1	50	1 (2)	4.00		2.00 to 4.00	28/09/2017 00:01:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS10	1	50	1 (2)			2.00 to 4.00	15 secs	-	-	-	-	2.5	0.0	17.5	0.0	1	0
WS10	1	50	1 (2)			2.00 to 4.00	30 secs	-	-	-	-	2.5	0.0	14.8	0.0	1	0
WS10	1	50	1 (2)			2.00 to 4.00	60 secs	-	-	-	-	2.5	0.0	14.5	0.0	1	0
WS10	1	50	1 (2)			2.00 to 4.00	90 secs	-	-	-	-	2.5	0.0	14.5	0.0	1	0
ey: I = Initial, P	= Peal	k, SS = Ste	eady State. No	ote: LEL = Lo	wer Explosive	e Limit = 5% v/v.											
D	CK ⊑	nviron	ment Ltd		Compiled B	8y	Date		Chec	ked By			Date	Contra	act Ref:		
	A	bbey P	Park	n	Distrecting	S	26/10/17									31358	3
		mber F Covent CV3 44	try	Contract:			Roade	Bypass						Page:	3	39 of	48

[Pressures] Previous During Start

End Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone		Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydroger Sulphide (ppm)
WS10	1	50	1 (2)	(11)	(IIIbgi) 	2.00 to 4.00	120 secs	-	-	-	-	2.5	0.0	14.6	0.0	1	0
WS10	1	50	1 (2)			2.00 to 4.00	180 secs	-	-	-	_	2.5	0.0	14.6	0.0	1	0
WS10	1	50	1 (2)			2.00 to 4.00	240 secs	-	-	-	_	2.5	0.0	14.6	0.0	1	0
WS10	1	50	1 (2)			2.00 to 4.00	300 secs	-	-	-	-	2.5	0.0	14.6	0.0	1	0
WS10	1	50	1 (3)	4.00	4.03	2.00 to 4.00	28/09/2017 00:07:00	-	-	-	3.23	-	-	-	-	-	-
WS10	1	50	2	4.00		2.00 to 4.00	05/10/2017 10:10:00	1005	1005	0.0 _(I)	-	-	-	-	-	-	-
WS10	1	50	2			2.00 to 4.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS10	1	50	2 (2)	4.00		2.00 to 4.00	05/10/2017 10:11:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS10	1	50	2 (2)			2.00 to 4.00	15 secs	-	-	-	-	2.6	0.0	18.0	0.0	0	0
WS10	1	50	2 (2)			2.00 to 4.00	30 secs	-	-	-	-	2.6	0.0	14.7	0.0	0	0
WS10	1	50	2 (2)			2.00 to 4.00	60 secs	-	-	-	-	2.7	0.0	14.2	0.0	0	0
WS10	1	50	2 (2)			2.00 to 4.00	90 secs	-	-	-	-	2.7	0.0	14.1	0.0	0	0
WS10	1	50	2 (2)			2.00 to 4.00	120 secs	-	-	-	-	2.7	0.0	14.1	0.0	0	0
WS10	1	50	2 (2)			2.00 to 4.00	180 secs	-	-	-	-	2.7	0.0	14.1	0.0	0	0
WS10	1	50	2 (2)			2.00 to 4.00	240 secs	-	-	-	-	2.7	0.0	14.0	0.0	0	0
WS10	1	50	2 (2)			2.00 to 4.00	300 secs	-	-	-	-	2.7	0.0	14.0	0.0	0	0
WS10	1	50	2 (3)	4.00	4.04	2.00 to 4.00	05/10/2017 10:17:00	-	-	-	3.22	-	-	-	-	-	-
WS10	1	50	3	4.00		2.00 to 4.00	13/10/2017 10:36:00	1010	1010	0.0 _(I)	-	-	-	-	-	-	-

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

	RSK Environment Ltd	Compiled By	Date	Checked By	Date	Contract Ref:			
DCK	Abbey Park	Mostrewiger	26/10/17			3	813583	3	
	Humber Road	Contract:		•	•	Page:			
	Coventry CV3 4AQ		Roade	Bypass		40	of	48	AGS

[Pressures] Previous During

<u>Start</u>

<u>End</u>

Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydroge Sulphide (ppm)
WS10	1	50	3			2.00 to 4.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS10	1	50	3 (2)	4.00		2.00 to 4.00	13/10/2017 10:37:00	-	-	-	-	0.1	0.0	20.9	-	0	0
WS10	1	50	3 (2)			2.00 to 4.00	60 secs	-	-	-	-	0.9	0.0	20.3	-	0	0
WS10	1	50	3 (2)			2.00 to 4.00	75 secs	-	-	-	-	1.0	0.0	19.1	-	0	0
WS10	1	50	3 (2)			2.00 to 4.00	90 secs	-	-	-	-	1.4	0.0	18.4	-	0	0
WS10	1	50	3 (2)			2.00 to 4.00	120 secs	-	-	-	-	1.9	0.0	17.5	-	0	0
WS10	1	50	3 (2)			2.00 to 4.00	150 secs	-	-	-	-	2.2	0.0	16.8	-	0	0
WS10	1	50	3 (2)			2.00 to 4.00	240 secs	-	-	-	-	2.5	0.0	16.2	-	0	0
WS10	1	50	3 (2)			2.00 to 4.00	300 secs	-	-	-	-	2.5	0.0	16.0	-	0	0
WS10	1	50	3 (2)			2.00 to 4.00	360 secs	-	-	-	-	2.6	0.0	16.0	-	0	0
WS10	1	50	3 (2)			2.00 to 4.00	390 secs	-	-	-	-	2.6	0.0	16.0	-	0	0
WS10	1	50	3 (2)			2.00 to 4.00	420 secs	-	-	-	-	2.6	0.0	16.0	-	0	0
WS10	1	50	3 (2)			2.00 to 4.00	435 secs	-	-	-	-	2.6	0.0	16.0	-	0	0
WS10	1	50	3 (2)			2.00 to 4.00	450 secs	-	-	-	-	2.6	0.0	16.0	-	0	0
WS10	1	50	3 (2)			2.00 to 4.00	480 secs	-	-	-	-	2.6	0.0	16.0	-	0	0
WS10	1	50	3 (2)			2.00 to 4.00	510 secs	-	-	-	-	2.6	0.0	16.0	-	0	0
WS10	1	50	3 (2)			2.00 to 4.00	540 secs	-	-	-	-	2.6	0.0	16.1	-	0	0
WS10	1	50	3 (2)			2.00 to 4.00	600 secs	-	-	-	-	2.6	0.0	16.2	-	0	0
WS10 y: I = Initial, P	1 = Peal	50 k, SS = Ste	3 (2) 3 (2) eady State. No	ote: LEL = Lc		2.00 to 4.00 e Limit = 5% v/v.		-	-	- - sked By	-			16.2		-	
		bbey P	ment Ltd	n	DStreaks		26/10/17									31358	3
SK		imber F		Contract:	n of cond	~	20,10,11							Page:			
	-	Covent	try				Roade	Bypass	i						4	41 of	48

AGS

CV3 4AQ

[Pressures] Previous During

<u>Start</u>

End Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS10	1	50	3 (2)			2.00 to 4.00	660 secs	-	-	-	-	2.5	0.0	16.3	-	0	0
WS10	1	50	3 (2)			2.00 to 4.00	720 secs	-	-	-	-	2.5	0.0	16.4	-	0	0
WS10	1	50	3 (3)	4.00	4.04	2.00 to 4.00	13/10/2017 10:53:00	-	-	-	3.15	-	-	-	-	-	-
WS10	1	50	4	4.00		2.00 to 4.00	18/10/2017 10:44:00	1002	1002	0.3 _(I)	-	-	-	-	-	-	-
WS10	1	50	4			2.00 to 4.00	30 secs	-	-	0.2 _(SS)	-	-	-	-	-	-	-
WS10	1	50	4 (2)	4.00		2.00 to 4.00	18/10/2017 10:44:45	-	-	-	-	0.1	0.0	20.9	-	0	-
WS10	1	50	4 (2)			2.00 to 4.00	15 secs	-	-	-	-	2.5	0.0	20.3	-	0	0
WS10	1	50	4 (2)			2.00 to 4.00	45 secs	-	-	-	-	2.5	0.0	18.0	-	0	0
WS10	1	50	4 (2)			2.00 to 4.00	75 secs	-	-	-	-	2.5	0.0	17.7	-	0	0
WS10	1	50	4 (2)			2.00 to 4.00	105 secs	-	-	-	-	2.6	0.0	17.7	-	0	0
WS10	1	50	4 (2)			2.00 to 4.00	135 secs	-	-	-	-	2.6	0.0	17.7	-	0	0
WS10	1	50	4 (2)			2.00 to 4.00	195 secs	-	-	-	-	2.6	0.0	17.7	-	0	0
WS10	1	50	4 (2)			2.00 to 4.00	255 secs	-	-	-	-	2.6	0.0	17.7	-	0	0
WS10	1	50	4 (2)			2.00 to 4.00	315 secs	-	-	-	-	2.6	0.0	17.8	-	0	0
WS10	1	50	4 (3)	4.00	4.04	2.00 to 4.00	18/10/2017 10:55:00	-	-	-	2.75	-	-	-	-	-	-
WS11	1	50	1	5.00		3.00 to 5.00	28/09/2017	1003	1003	0.0(1)	-	-	-	-	-	-	-
WS11	1	50	1			3.00 to 5.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
Key: I = Initial, F	P = Pea	k, SS = Ste	eady State. No	ote: LEL = Lo	wer Explosiv	e Limit = 5% v/v.	1	1		(1	I	I	1		1	I
-			·		Compiled E	3y	Date		Cheo	cked By			Date	Contra	act Ref:		
	RSK Environment Lt				DStrews		26/10/17									31358	3
		Imber F		Contract:								•		Page:			

Roade Bypass

42 of 48

AGS

Coventry

CV3 4AQ

[Pressures] Previous During

End Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS11	1	50	1 (2)	5.00		3.00 to 5.00	28/09/2017 00:01:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS11	1	50	1 (2)			3.00 to 5.00	15 secs	-	-	-	-	3.9	0.0	19.1	0.0	1	0
WS11	1	50	1 (2)			3.00 to 5.00	30 secs	-	-	-	-	4.0	0.0	14.6	0.0	1	0
WS11	1	50	1 (2)			3.00 to 5.00	60 secs	-	-	-	-	4.0	0.0	13.8	0.0	0	0
WS11	1	50	1 (2)			3.00 to 5.00	90 secs	-	-	-	-	4.0	0.0	13.7	0.0	0	0
WS11	1	50	1 (2)			3.00 to 5.00	120 secs	-	-	-	-	4.0	0.0	13.7	0.0	0	0
WS11	1	50	1 (2)			3.00 to 5.00	180 secs	-	-	-	-	4.0	0.0	13.6	0.0	0	0
WS11	1	50	1 (2)			3.00 to 5.00	240 secs	-	-	-	-	4.0	0.0	13.6	0.0	0	0
WS11	1	50	1 (2)			3.00 to 5.00	300 secs	-	-	-	-	4.0	0.0	13.6	0.0	0	0
WS11	1	50	1 (3)	5.00	4.48	3.00 to 5.00	28/09/2017 00:07:00	-	-	-	DRY	-	-	-	-	-	-
WS11	1	50	2	5.00		3.00 to 5.00	05/10/2017 08:40:00	1003	1003	0.0 _(I)	-	-	-	-	-	-	-
WS11	1	50	2			3.00 to 5.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS11	1	50	2 (2)	5.00		3.00 to 5.00	05/10/2017 08:41:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS11	1	50	2 (2)			3.00 to 5.00	15 secs	-	-	-	-	1.5	0.0	20.2	0.0	0	0
WS11	1	50	2 (2)			3.00 to 5.00	30 secs	-	-	-	-	1.5	0.0	19.7	0.0	0	0
WS11	1	50	2 (2)			3.00 to 5.00	60 secs	-	-	-	-	1.5	0.0	19.6	0.0	0	0
WS11	1	50	2 (2)			3.00 to 5.00	90 secs	-	-	-	-	1.5	0.0	19.6	0.0	0	0
WS11	1	50	2 (2)			3.00 to 5.00	120 secs	-	-	-	-	1.4	0.0	19.6	0.0	0	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

<u>Start</u>

	RSK Environment Ltd	Compiled By	Date	Checked By	Date	Contract Ref:		
DCK	Abbey Park	Mostrewiger	26/10/17			3	13583	
	Humber Road	Contract:	•		•	Page:		
	Coventry CV3 4AQ		Roade	Bypass		43	of 4	B AGS

[Pressures] Previous During

End Equipment Used & Remarks

<u>Start</u>

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS11	1	50	2 (2)			3.00 to 5.00	180 secs	-	-	-	-	1.4	0.0	19.7	0.0	0	0
WS11	1	50	2 (2)			3.00 to 5.00	240 secs	-	-	-	-	1.3	0.0	19.8	0.0	0	0
WS11	1	50	2 (2)			3.00 to 5.00	300 secs	-	-	-	-	1.2	0.0	19.9	0.0	0	0
WS11	1	50	2 (3)	5.00	4.52	3.00 to 5.00	05/10/2017 08:47:00	-	-	-	DRY	-	-	-	-	-	-
WS11	1	50	3	5.00		3.00 to 5.00	13/10/2017 10:00:00	1007	1007	0.0 _(I)	-	-	-	-	-	-	-
WS11	1	50	3			3.00 to 5.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS11	1	50	3 (2)	5.00		3.00 to 5.00	13/10/2017 10:01:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS11	1	50	3 (2)			3.00 to 5.00	15 secs	-	-	-	-	0.1	0.0	21.2	0.0	1	0
WS11	1	50	3 (2)			3.00 to 5.00	30 secs	-	-	-	-	0.1	0.0	21.2	0.0	0	0
WS11	1	50	3 (2)			3.00 to 5.00	60 secs	-	-	-	-	0.1	0.0	21.2	0.0	0	0
WS11	1	50	3 (2)			3.00 to 5.00	90 secs	-	-	-	-	0.1	0.0	21.3	0.0	0	0
WS11	1	50	3 (2)			3.00 to 5.00	120 secs	-	-	-	-	0.1	0.0	21.3	0.0	0	0
WS11	1	50	3 (2)			3.00 to 5.00	180 secs	-	-	-	-	0.1	0.0	21.3	0.0	0	0
WS11	1	50	3 (2)			3.00 to 5.00	240 secs	-	-	-	-	0.1	0.0	21.3	0.0	0	0
WS11	1	50	3 (2)			3.00 to 5.00	300 secs	-	-	-	-	0.1	0.0	21.3	0.0	0	0
WS11	1	50	3 (3)	5.00	4.53	3.00 to 5.00	13/10/2017 10:07:00	-	-	-	DRY	-	-	-	-	-	-
WS11	1	50	4	5.00		3.00 to 5.00	19/10/2017 09:49:00	993	993	0.3 _(I)	-	-	-	-	-	-	-
WS11	1	50	4			3.00 to 5.00	30 secs	-	-	0.2 _(SS)	-	-	-	-	-	-	-

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

	RSK Environment Ltd	Compiled By	Date	Checked By	Date	Contract Ref:			
DCK	Abbey Park	Mostrewiger	26/10/17			(813583	3	
	Humber Road	Contract:			•	Page:			
	Coventry CV3 4AQ		Roade	Bypass		44	of	48	AGS

[Pressures] Previous During

<u>Start</u>

<u>End</u>

Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS11	1	50	4 (2)	5.00		3.00 to 5.00	19/10/2017 09:50:00	-	-	-	-	0.1	0.0	20.9	-	0	0
WS11	1	50	4 (2)			3.00 to 5.00	30 secs	-	-	-	-	1.8	0.0	20.6	-	0	0
WS11	1	50	4 (2)			3.00 to 5.00	60 secs	-	-	-	-	1.7	0.0	19.5	-	0	0
WS11	1	50	4 (2)			3.00 to 5.00	90 secs	-	-	-	-	1.7	0.0	19.2	-	0	0
WS11	1	50	4 (2)			3.00 to 5.00	120 secs	-	-	-	-	1.7	0.0	19.2	-	0	0
WS11	1	50	4 (2)			3.00 to 5.00	150 secs	-	-	-	-	1.7	0.0	19.2	-	0	0
WS11	1	50	4 (2)			3.00 to 5.00	180 secs	-	-	-	-	1.7	0.0	19.2	-	0	0
WS11	1	50	4 (2)			3.00 to 5.00	240 secs	-	-	-	-	1.7	0.0	19.1	-	0	0
WS11	1	50	4 (2)			3.00 to 5.00	300 secs	-	-	-	-	1.7	0.0	19.1	-	0	0
WS11	1	50	4 (3)	5.00	4.53	3.00 to 5.00	19/10/2017 09:56:00	-	-	-	4.53	-	-	-	-	-	-
WS12	1	50	1	5.00		3.00 to 5.00	28/09/2017 08:53:00	1001	1001	0.0(1)	_	-	-	-	_	-	-
WS12	1	50	1			3.00 to 5.00	30 secs	-	-	0.0 _(SS)	_	-	-	-	_	-	-
WS12	1	50	1 (2)	5.00		3.00 to 5.00	28/09/2017 08:54:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS12	1	50	1 (2)			3.00 to 5.00	15 secs	_	-	-	_	4.1	0.0	17.2	0.0	1	0
WS12	1	50	1 (2)			3.00 to 5.00	30 secs	-	-	-	-	3.7	0.0	16.0	0.0	1	0
WS12	1	50	1 (2)			3.00 to 5.00	60 secs	-	-	-	-	3.8	0.0	15.7	0.0	1	0
WS12	1	50	1 (2)			3.00 to 5.00	90 secs	-	-	-	-	3.8	0.0	15.6	0.0	1	0
(ey: I = Initial, P	= Peal	k, SS = Ste	eady State. No	ote: LEL = Lo	wer Explosiv	e Limit = 5% v/v.	·									1	
D		nviron	ment Ltd		Compiled E	3y	Date		Chec	ked By			Date	Contra	act Ref:		
	A	bbey P	ark	n	DStrewky	s	26/10/17									31358	3
		Imber F Covent CV3 4A	ry	Contract:			Roade	Bypass	;					Page:		45 of	48

AGS

[Pressures] Previous During Start

End Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth	Measured Installation Depth	Response Zone	Date 0 These	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydroge Sulphide (ppm)
WS12	1	50	1 (2)	(m)	(mbgl)	3.00 to 5.00	120 secs	_	_	_	_	3.8	0.0	15.6	0.0	1	0
WS12	1	50	1 (2)			3.00 to 5.00	180 secs	_	-	-	-	3.9	0.0	15.5	0.0	1	0
WS12	1	50	1 (2)			3.00 to 5.00	240 secs	-	-	-	-	3.9	0.0	15.5	0.0	1	0
WS12	1	50	1 (2)			3.00 to 5.00	300 secs	-	-	-	-	3.9	0.0	15.4	0.0	1	0
WS12	1	50	1 (3)	5.00	5.06	3.00 to 5.00	28/09/2017 09:00:00	-	-	-	3.58	-	-	-	-	-	-
WS12	1	50	2	5.00		3.00 to 5.00	05/10/2017 08:52:00	999	999	0.0(1)	-	-	-	-	-	-	-
WS12	1	50	2			3.00 to 5.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS12	1	50	2 (2)	5.00		3.00 to 5.00	05/10/2017 08:53:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS12	1	50	2 (2)			3.00 to 5.00	15 secs	-	-	-	-	7.9	0.0	13.9	0.0	1	0
WS12	1	50	2 (2)			3.00 to 5.00	30 secs	-	-	-	-	7.5	0.0	12.4	0.0	1	0
WS12	1	50	2 (2)			3.00 to 5.00	60 secs	-	-	-	-	7.6	0.0	12.0	0.0	1	0
WS12	1	50	2 (2)			3.00 to 5.00	90 secs	-	-	-	-	7.7	0.0	11.9	0.0	1	0
WS12	1	50	2 (2)			3.00 to 5.00	120 secs	-	-	-	-	7.7	0.0	11.9	0.0	1	0
WS12	1	50	2 (2)			3.00 to 5.00	180 secs	-	-	-	-	7.7	0.0	11.8	0.0	1	0
WS12	1	50	2 (2)			3.00 to 5.00	240 secs	-	-	-	-	7.7	0.0	11.8	0.0	1	0
WS12	1	50	2 (2)			3.00 to 5.00	300 secs	-	-	-	-	7.7	0.0	11.8	0.0	1	0
WS12	1	50	2 (3)	5.00	5.07	3.00 to 5.00	05/10/2017 08:59:00	-	-	-	4.80	-	-	-	-	-	-
WS12	1	50	3	5.00		3.00 to 5.00	13/10/2017 09:43:00	1008	1008	0.1 _(l)	-	-	-	-	-	-	-

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

	RSK Environment Ltd	Compiled By	Date	Checked By	Date	Contract Ref:			
DCK	Abbey Park	Mostreukje	26/10/17			3	13583		
	Humber Road	Contract:			•	Page:			
	Coventry CV3 4AQ		Roade	Bypass		46	of 4	18	AGS

[Pressures] Previous During

<u>Start</u>

End Equipment Used & Remarks

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone		Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS12	1	50	3			3.00 to 5.00	30 secs	-	-	0.1 _(SS)	-	-	-	-	-	-	-
WS12	1	50	3 (2)	5.00		3.00 to 5.00	13/10/2017 09:44:00	-	-	-	-	0.1	0.0	20.8	-	0	0
WS12	1	50	3 (2)			3.00 to 5.00	60 secs	-	-	-	-	9.1	0.0	17.0	-	0	0
WS12	1	50	3 (2)			3.00 to 5.00	90 secs	-	-	-	-	8.5	0.0	12.3	-	0	0
WS12	1	50	3 (2)			3.00 to 5.00	120 secs	-	-	-	-	8.7	0.0	11.4	-	0	0
WS12	1	50	3 (2)			3.00 to 5.00	150 secs	-	-	-	-	8.8	0.0	11.3	-	0	0
WS12	1	50	3 (2)			3.00 to 5.00	180 secs	-	-	-	-	8.8	0.0	11.2	-	0	0
WS12	1	50	3 (2)			3.00 to 5.00	240 secs	-	-	-	-	8.8	0.0	11.2	-	0	0
WS12	1	50	3 (2)			3.00 to 5.00	300 secs	-	-	-	-	8.8	0.0	11.2	-	0	0
WS12	1	50	3 (2)			3.00 to 5.00	360 secs	-	-	-	-	8.8	0.0	11.2	-	0	0
WS12	1	50	3 (2)			3.00 to 5.00	420 secs	-	-	-	-	8.8	0.0	11.2	-	0	0
WS12	1	50	3 (3)	5.00	5.08	3.00 to 5.00	13/10/2017 09:51:30	-	-	-	4.64	-	-	-	-	-	-
WS12	1	50	4	5.00		3.00 to 5.00	19/10/2017 10:13:00	994	994	0.1 _(I)	-	-	-	-	-	-	-
WS12	1	50	4			3.00 to 5.00	15 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS12	1	50	4 (2)	5.00		3.00 to 5.00	19/10/2017 10:13:30	-	-	-	-	0.1	0.0	20.8	-	0	0
WS12	1	50	4 (2)			3.00 to 5.00	30 secs	-	-	-	-	8.7	0.0	18.1	-	1	0
WS12	1	50	4 (2)			3.00 to 5.00	60 secs	-	-	-	-	8.1	0.0	12.6	-	1	0
WS12	1	50	4 (2)			3.00 to 5.00	90 secs	-	-	-	-	8.4	0.0	11.4	-	1	0
Key: I = Initial, F	P = Peal	k, SS = Ste	eady State. No	ote: LEL = Lo	wer Explosiv	e Limit = 5% v/v.										·	
C	RSK Environment Lt				Compiled E	Зу	Date		Cheo	cked By			Date	Contra	act Ref:		
SK	A	bbey F	Park		DStrews	e	26/10/17									31358	3
	Hu	imber F	≺oad	Contract:										Page:			

Roade Bypass

47 of **48**

AGS

Coventry

CV3 4AQ

[Pressures] Previous During Start

End

Equipment Used & Remarks

Pipe Reported Measured Borehole Atmos Carbon LEL Carbon Monitoring Gas Water Methane Hydrogen Exploratory Oxygen Pipe Date & Time Installation Installation Pressure Pressure Monoxide Sulphide Position diameter Round Flow Depth Dioxide Response Zone ref of Monitoring ID (mm) Depth Depth (mb) (mb) (l/hr)(mbgl) (% / vol) (% / vol) (% / vol) (%) (ppm) (ppm) (elapsed time) (m) (mbgl) WS12 4 (2) 3.00 to 5.00 0.0 11.3 0 1 50 120 secs 8.4 1 ---------WS12 1 50 4 (2) 3.00 to 5.00 150 secs 8.4 0.0 11.3 0 0 ---------WS12 4 (2) 0.0 11.2 0 1 50 3.00 to 5.00 210 secs 8.4 0 --------WS12 1 50 4 (2) 11.2 3.00 to 5.00 270 secs 8.4 0.0 0 0 ---_ ----WS12 1 50 4 (2) 3.00 to 5.00 8.4 0.0 11.2 0 0 330 secs ----_ ----WS12 50 4 (3) 4.57 1 5.00 5.08 3.00 to 5.00 19/10/2017 10:20:00 ---_ -----Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v. Contract Ref: Compiled By Date Checked By Date **RSK Environment Ltd** MDStrewiger 313583 Abbey Park 26/10/17 Humber Road Contract. Page: Coventry **Roade Bypass** 48 of **48** AGS

GINT LIBRARY V8 06.GLB : E - GAS MON - STANDARD - 6B - A4L : 313583 - ROADE BYPASS.GPJ : 26/10/17 09:47 : MS4 :

CV3 4AQ

APPENDIX G GROUNDWATER MONITORING RECORDS

	<u>Wea</u>	ther	Ground C	<u>Conditions</u>	Wind Con	ditions <u>Air Terr</u>	nperature (°C)	<u>Equi</u>	oment Use	d & Remark	<u>ks</u>			
ound 2	Clou	ydy	Dai	mp	Mediu	m	12	GA5	000 + Dipm	neter				
Exploratory Position ID	Pipe Ref	Pipe Diameter	Monitoring Round / Test Number	Reported Installation Depth	Measured Installation Depth	Response Zone	Date & Time of Monitoring	Water Depth (mbgl)	рН	Redox (mV)	Conduc- tivity (uS/cm)	Temp- erature (°C)	Dissolved Oxygen (mg/l)	Remarks
	1	50		(m)	(mbgl)	10.00 to 20.00	05/40/2047 40:04		0.00	240	· · ·			General Remarks: Samples taken
BH01	1	50	2 / 1	20.00	19.50	10.00 to 20.00	05/10/2017 10:01	17.17	9.00	318	4379	11.2	4.2	
BH02	1	50	2/1	30.00	29.02	20.00 to 30.00	05/10/2017 09:20	20.15	7.84	306	1650	11.2	3.7	General Remarks: Samples taken cloudy grey and no odour.
BH04	1	50	2 / 1	11.00	10.87	7.00 to 11.00	06/10/2017	9.92						General Remarks: Samples taker but well ran dry before readings could be taken.
BH05	1	50	2 / 1	12.00	9.78	8.00 to 12.00	05/10/2017 13:40	6.92	7.84	274	2338	12.0	4.1	General Remarks: Samples taken very cloudy grey and no odour.
WS02	1	50	2/1	5.00	5.00	3.00 to 5.00	05/10/2017 10:50	2.77						General Remarks: Samples taken started off clear but became
WS10	1	50	2/1	4.00	4.04	2.00 to 4.00	05/10/2017 15:30	3.22						cloudier and no odour. Unable to take readings due to slow recharg General Remarks: Samples taken clear and no odour. Unable to take
														readings due to well running dry.
: NDA denote	es 'no data	a available	e'.											
R	SK Env	vironme	ent I td	(Compiled By		Date	(Checked By	1		Date	Contra	act Ref:
	Abb	bey Pai	rk 🛛				02/11/17							313583
	Co	iber Ro oventry /3 4AC	,	Contract:		· · ·	Roade By	oass					Page:	1 of 1

GINT_LIBRARY_V8_06.GLB : E - WATER QUALITY - GENERAL - SMALL : 313583 - ROADE BYPASS.GPJ : 02/11/17 12:30 : RS5 :

APPENDIX H LABORATORY CERTIFICATES FOR SOIL ANALYSIS

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: Issue Number: 17/06450 1

Date: 06 October, 2017

Client:

RSK Environment Ltd Coventry Humber Road, Abbey Park Coventry UK CV3 4AQ

Project Manager:	Darren Bench
Project Name:	Roade Bypass
Project Ref:	313583
Order No:	N/A
Date Samples Received:	07/09/17
Date Instructions Received:	22/09/17
Date Analysis Completed:	06/10/17

Prepared by:

APR

Danielle Brierley Client Manager Approved by:

GWaller

Gill Walker Laboratory Manager

Page 1 of 18

Client Project Name: Roade Bypass

					-					
Lab Sample ID	17/06450/1	17/06450/2	17/06450/3	17/06450/4	17/06450/5	17/06450/6	17/06450/7	17/06450/8		
Client Sample No										
Client Sample ID	TP01	TP02	TP03	TP04	TP05	TP12	TP14	TP15		
Depth to Top	0.20	0.20	0.30	0.50	0.20	0.20	0.20	0.20		
Depth To Bottom										
Date Sampled	11-Sep-17	11-Sep-17	11-Sep-17	11-Sep-17	11-Sep-17	08-Sep-17	07-Sep-17	07-Sep-17		if
Sample Type	Soil		Method ref							
Sample Matrix Code	6AE	6AE	6AE	6AE	6	5AE	5AE	5AE	Units	Meth
% Stones >10mm _A	<0.1	<0.1	<0.1	2.7	<0.1	1.9	1.9	3.4	% w/w	A-T-044
pH _D ^{M#}	7.66	7.15	8.10	8.20	6.86	7.90	7.67	7.40	рН	A-T-031s
Phenols - Total by HPLC _A	<0.2	<0.2	<0.2	0.4	<0.2	<0.2	<0.2	<0.2	mg/kg	A-T-050s
Total Organic Carbon _D ^{M#}	3.73	1.61	2.64	1.69	2.69	0.99	1.33	2.07	% w/w	A-T-032s
Arsenic _D ^{M#}	4	10	2	<1	4	11	7	8	mg/kg	A-T-024s
Cadmium _D ^{M#}	0.9	1.1	1.0	1.0	0.7	1.1	1.0	1.3	mg/kg	A-T-024s
Copper _D ^{M#}	33	16	24	15	12	15	14	15	mg/kg	A-T-024s
Chromium _D ^{M#}	36	26	39	37	34	26	26	35	mg/kg	A-T-024s
Chromium (hexavalent) _D	<1	<1	<1	<1	<1	<1	<1	<1	mg/kg	A-T-040s
Lead _D ^{M#}	30	24	20	16	21	96	21	22	mg/kg	A-T-024s
Mercury _D	<0.17	<0.17	0.30	<0.17	<0.17	<0.17	<0.17	<0.17	mg/kg	A-T-024s
Nickel _D ^{M#}	26	24	31	30	21	27	26	29	mg/kg	A-T-024s
Selenium _p ^{M#}	1	1	1	<1	<1	<1	<1	<1	mg/kg	A-T-024s
Zinc _D ^{M#}	82	68	69	53	63	73	71	87	mg/kg	A-T-024s

Client Project Name: Roade Bypass

Lab Sample ID	17/06450/1	17/06450/2	17/06450/3	17/06450/4	17/06450/5	17/06450/6	17/06450/7	17/06450/8		
Client Sample No										
Client Sample ID	TP01	TP02	TP03	TP04	TP05	TP12	TP14	TP15		
Depth to Top	0.20	0.20	0.30	0.50	0.20	0.20	0.20	0.20		
Depth To Bottom										
Date Sampled	11-Sep-17	11-Sep-17	11-Sep-17	11-Sep-17	11-Sep-17	08-Sep-17	07-Sep-17	07-Sep-17		يە تە
Sample Type	Soil		Method ref							
Sample Matrix Code	6AE	6AE	6AE	6AE	6	5AE	5AE	5AE	Units	Meth
Asbestos in Soil (inc. matrix)										
Asbestos in soil _A [#]	NAD		A-T-045							
Asbestos ACM - Suitable for Water Absorption Test?	N/A									

Client Project Name: Roade Bypass

Lab Sample ID	17/06450/1	17/06450/2	17/06450/3	17/06450/4	17/06450/5	17/06450/6	17/06450/7	17/06450/8		
Client Sample No										
Client Sample ID	TP01	TP02	TP03	TP04	TP05	TP12	TP14	TP15		
Depth to Top	0.20	0.20	0.30	0.50	0.20	0.20	0.20	0.20		
Depth To Bottom										
Date Sampled	11-Sep-17	11-Sep-17	11-Sep-17	11-Sep-17	11-Sep-17	08-Sep-17	07-Sep-17	07-Sep-17		if
Sample Type	Soil		Method ref							
Sample Matrix Code	6AE	6AE	6AE	6AE	6	5AE	5AE	5AE	Units	Meth
Nitrogen Pesticides										
Ametryn _A	-	<50	-	-	-	<50	-	-	µg/kg	Subcon
Atraton _A	-	<50	-	-	-	<50	-	-	µg/kg	Subcon
Atrazine _A	-	<50	-	-	-	<50	-	-	µg/kg	Subcon
Prometon _A	-	<50	-	-	-	<50	-	-	µg/kg	Subcon
Prometryn _A	-	<50	-	-	-	<50	-	-	µg/kg	Subcon
Propazine _A	-	<50	-	-	-	<50	-	-	µg/kg	Subcon
Simazine _A	-	<50	-	-	-	<50	-	-	µg/kg	Subcon
Simetryn _A	-	<50	-	-	-	<50	-	-	µg/kg	Subcon
Terbuthylazine _A	-	<50	-	-	-	<50	-	-	µg/kg	Subcon
Terbutryn _A	-	<50	-	-	-	<50	-	-	µg/kg	Subcon

Client Project Name: Roade Bypass

						,				
Lab Sample ID	17/06450/1	17/06450/2	17/06450/3	17/06450/4	17/06450/5	17/06450/6	17/06450/7	17/06450/8		
Client Sample No										
Client Sample ID	TP01	TP02	TP03	TP04	TP05	TP12	TP14	TP15		
Depth to Top	0.20	0.20	0.30	0.50	0.20	0.20	0.20	0.20		
Depth To Bottom										
Date Sampled	11-Sep-17	11-Sep-17	11-Sep-17	11-Sep-17	11-Sep-17	08-Sep-17	07-Sep-17	07-Sep-17		<i>~</i>
Sample Type	Soil		od re							
Sample Matrix Code	6AE	6AE	6AE	6AE	6	5AE	5AE	5AE	Units	Method ref
Pest-c										
Mevinphos _A	-	<50	-	-		<50	-	-	µg/kg	Subcon
Dichlorvos _A	-	<50	-			<50	-	-	µg/kg	Subcon
alpha-Hexachlorocyclohexane (HCH) _A	-	<50	-	-	-	<50	-	-	µg/kg	Subcon
Diazinon _A	-	<50	-	-	-	<50	-	-	µg/kg	Subcon
gamma-Hexachlorocyclohexane (HCH / Lindane) _A	-	<50	-	-	-	<50	-	-	µg/kg	Subcon
Heptachlor _A	-	<50	-	-	-	<50	-	-	µg/kg	Subcon
Aldrin _A	-	<50	-	-	-	<50	-	-	µg/kg	Subcon
beta-Hexachlorocyclohexane (HCH) _A	-	<50	-	-	-	<50	-	-	µg/kg	Subcon
Methyl Parathion _A	-	<50	-	-	-	<50	-	-	µg/kg	Subcon
Malathion _A	-	<50	-	-	-	<50	-	-	µg/kg	Subcon
Fenitrothion _A	-	<50	-	-	-	<50	-	-	µg/kg	Subcon
Heptachlor Epoxide _A	-	<50	-	-	-	<50	-	-	µg/kg	Subcon
Parathion (Ethyl Parathion) _A	-	<50	-	-	-	<50	-	-	µg/kg	Subcon
p,p-DDE _A	-	<50	-	-	-	<50	-	-	µg/kg	Subcon
p,p-DDT _A	-	<50	-	-	-	<50	-	-	µg/kg	Subcon
p,p-Methoxychlor _A	-	<50	-	-	-	<50	-	-	µg/kg	Subcon
p,p-TDE (DDD) _A	-	<50	-	-	-	<50	-	-	µg/kg	Subcon
o,p-DDE _A	-	<50	-	-	-	<50	-	-	µg/kg	Subcon
o,p-DDT _A	-	<50	-	-	-	<50	-	-	µg/kg	Subcon
o,p-Methoxychlor _A	-	<50	-	-	-	<50	-	-	µg/kg	Subcon
o,p-TDE (DDD) _A	-	<50	-	-	-	<50	-	-	µg/kg	Subcon
Endosulphan I _A	-	<50	-	-	-	<50	-	-	µg/kg	Subcon
Endosulphan II _A	-	<50	-	-	-	<50	-	-	µg/kg	Subcon
Endosulphan Sulphate _A	-	<50	-	-	-	<50	-	-	µg/kg	Subcon
Endrin _A	-	<50	-	-	-	<50	-	-	µg/kg	Subcon
Ethion _A	-	<50	-	-	-	<50	-	-	µg/kg	Subcon
Dieldrin _A	-	<50	-	-	-	<50	-	-	µg/kg	Subcon

Client Project Name: Roade Bypass

Lab Sample ID	17/06450/1	17/06450/2	17/06450/3	17/06450/4	17/06450/5	17/06450/6	17/06450/7	17/06450/8		
Client Sample No										
Client Sample ID	TP01	TP02	TP03	TP04	TP05	TP12	TP14	TP15		
Depth to Top	0.20	0.20	0.30	0.50	0.20	0.20	0.20	0.20		
Depth To Bottom										
Date Sampled	11-Sep-17	11-Sep-17	11-Sep-17	11-Sep-17	11-Sep-17	08-Sep-17	07-Sep-17	07-Sep-17		ų
Sample Type	Soil		Method ref							
Sample Matrix Code	6AE	6AE	6AE	6AE	6	5AE	5AE	5AE	Units	Meth
PAH 16										
Acenaphthene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-019s
Anthracene _A ^{M#}	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	A-T-019s
Benzo(a)anthracene _A ^{M#}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	A-T-019s
Benzo(a)pyrene _A ^{M#}	0.06	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	A-T-019s
Benzo(ghi)perylene _A ^{M#}	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	A-T-019s
Chrysene _A ^{M#}	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	mg/kg	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	A-T-019s
Fluoranthene ^{A^{M#}}	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	mg/kg	A-T-019s
Fluorene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	0.04	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	A-T-019s
Naphthalene _A ^{M#}	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	A-T-019s
Phenanthrene _A ^{M#}	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	A-T-019s
Pyrene _A ^{M#}	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	A-T-019s
PAH (total 16) _A ^{M#}	0.10	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	mg/kg	A-T-019s

Client Project Name: Roade Bypass

Lab Sample ID	17/06450/1	17/06450/2	17/06450/3	17/06450/4	17/06450/5	17/06450/6	17/06450/7	17/06450/8		
Client Sample No										
Client Sample ID	TP01	TP02	TP03	TP04	TP05	TP12	TP14	TP15		
Depth to Top	0.20	0.20	0.30	0.50	0.20	0.20	0.20	0.20		
Depth To Bottom										
Date Sampled	11-Sep-17	11-Sep-17	11-Sep-17	11-Sep-17	11-Sep-17	08-Sep-17	07-Sep-17	07-Sep-17		L
Sample Type	Soil		od re							
Sample Matrix Code	6AE	6AE	6AE	6AE	6	5AE	5AE	5AE	Units	Method ref
TPH CWG										
Ali >C5-C6 _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Ali >C6-C8 _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Ali >C8-C10 ₄ [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Ali >C10-C12 _A [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Ali >C12-C16 _A [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Ali >C16-C21 _A [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Ali >C21-C35 _A [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Total Aliphatics _A	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Aro >C5-C7 _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Aro >C7-C8 _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Aro >C8-C9 _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Aro >C9-C10 _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Aro >C10-C12 ₄ [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Aro >C12-C16 _A [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Aro >C16-C21 _A [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Aro >C21-C35 _A #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Total Aromatics _A	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
TPH (Ali & Aro) _A	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
BTEX - Benzene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
BTEX - Toluene _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
BTEX - Ethyl Benzene [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
BTEX - m & p Xylene _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
BTEX - o Xylene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
MTBE _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s

Client Project Name: Roade Bypass

Lab Sample ID	17/06450/9	17/06450/10	17/06450/11	17/06450/12	17/06450/13	17/06450/15	17/06450/16	17/06450/17		
Client Sample No										
Client Sample ID	TP15	TP16	TP16A	TP16A	TP17	WS02	WS04	WS05		
Depth to Top	1.50	0.10	0.20	0.50	0.20	0.20	0.30	0.20		
Depth To Bottom										
Date Sampled	07-Sep-17	07-Sep-17	08-Sep-17	08-Sep-17	07-Sep-17	06-Sep-17	30-Aug-17	30-Aug-17		ų.
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil		Method ref
Sample Matrix Code	5A	4AE	4AE	5AE	5AE	5AE	5A	5AE	Units	Meth
% Stones >10mm _A	<0.1	2.7	25.7	<0.1	<0.1	<0.1	<0.1	4.8	% w/w	A-T-044
рН _D ^{M#}	8.47	8.17	8.78	8.17	7.91	7.66	8.11	7.55	рН	A-T-031s
Phenols - Total by HPLC _A	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	A-T-050s
Total Organic Carbon _D ^{M#}	<0.03	1.43	<0.03	0.58	2.19	1.19	1.93	2.56	% w/w	A-T-032s
Arsenic _D ^{M#}	<1	3	1	3	3	7	3	<1	mg/kg	A-T-024s
Cadmium _D ^{M#}	<0.5	0.8	<0.5	0.7	0.7	1.3	0.8	0.8	mg/kg	A-T-024s
Copper _D ^{M#}	5	12	2	10	13	13	14	20	mg/kg	A-T-024s
Chromium _D ^{M#}	11	18	4	20	20	33	18	25	mg/kg	A-T-024s
Chromium (hexavalent) _D	<1	<1	<1	<1	<1	<1	<1	<1	mg/kg	A-T-040s
Lead _D ^{M#}	4	18	2	13	16	19	16	16	mg/kg	A-T-024s
Mercury _D	<0.17	<0.17	0.31	<0.17	0.29	<0.17	0.20	<0.17	mg/kg	A-T-024s
Nickel ^{M#}	11	17	3	17	16	33	16	21	mg/kg	A-T-024s
Selenium _p ^{M#}	<1	<1	<1	<1	<1	1	<1	<1	mg/kg	A-T-024s
Zinc _D ^{M#}	16	54	5	45	50	72	52	58	mg/kg	A-T-024s

Client Project Name: Roade Bypass

Lab Sample ID	17/06450/9	17/06450/10	17/06450/11	17/06450/12	17/06450/13	17/06450/15	17/06450/16	17/06450/17		
Client Sample No										
Client Sample ID	TP15	TP16	TP16A	TP16A	TP17	WS02	WS04	WS05		
Depth to Top	1.50	0.10	0.20	0.50	0.20	0.20	0.30	0.20		
Depth To Bottom										
Date Sampled	07-Sep-17	07-Sep-17	08-Sep-17	08-Sep-17	07-Sep-17	06-Sep-17	30-Aug-17	30-Aug-17		ب
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil		Method ref
Sample Matrix Code	5A	4AE	4AE	5AE	5AE	5AE	5A	5AE	Units	Meth
Asbestos in Soil (inc. matrix)										
Asbestos in soil _A [#]	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD		A-T-045
Asbestos ACM - Suitable for Water Absorption Test?	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		

Client Project Name: Roade Bypass

Lab Sample ID	17/06450/9	17/06450/10	17/06450/11	17/06450/12	17/06450/13	17/06450/15	17/06450/16	17/06450/17		
Client Sample No										
Client Sample ID	TP15	TP16	TP16A	TP16A	TP17	WS02	WS04	WS05		
Depth to Top	1.50	0.10	0.20	0.50	0.20	0.20	0.30	0.20		
Depth To Bottom										
Date Sampled	07-Sep-17	07-Sep-17	08-Sep-17	08-Sep-17	07-Sep-17	06-Sep-17	30-Aug-17	30-Aug-17		if
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil		Method ref
Sample Matrix Code	5A	4AE	4AE	5AE	5AE	5AE	5A	5AE	Units	Meth
Nitrogen Pesticides										
Ametryn _A	-	-	<50	-	<50	-	-	-	µg/kg	Subcon
Atraton _A	-	-	<50	-	<50	-	-	-	µg/kg	Subcon
Atrazine _A	-	-	<50	-	<50	-	-	-	µg/kg	Subcon
Prometon _A	-	-	<50	-	<50	-	-	-	µg/kg	Subcon
Prometryn _A	-	-	<50	-	<50	-	-	-	µg/kg	Subcon
Propazine _A	-	-	<50	-	<50	-	-	-	µg/kg	Subcon
Simazine _A	-	-	<50	-	<50	-	-	-	µg/kg	Subcon
Simetryn _A	-	-	<50	-	<50	-	-	-	µg/kg	Subcon
Terbuthylazine _A	-	-	<50	-	<50	-	-	-	µg/kg	Subcon
Terbutryn _A	-	-	<50	-	<50	-	-	-	µg/kg	Subcon

Client Project Name: Roade Bypass

Lab Sample ID	17/06450/9	17/06450/10	17/06450/11	17/06450/12	17/06450/13	17/06450/15	17/06450/16	17/06450/17		
Client Sample No										
Client Sample ID	TP15	TP16	TP16A	TP16A	TP17	WS02	WS04	WS05		
Depth to Top	1.50	0.10	0.20	0.50	0.20	0.20	0.30	0.20		
Depth To Bottom										
Date Sampled	07-Sep-17	07-Sep-17	08-Sep-17	08-Sep-17	07-Sep-17	06-Sep-17	30-Aug-17	30-Aug-17		ų.
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil		od re
Sample Matrix Code	5A	4AE	4AE	5AE	5AE	5AE	5A	5AE	Units	Method ref
Pest-c										
Mevinphos _A	-	-	<50	-	<50	-	-	-	µg/kg	Subcon
Dichlorvos _A	-	-	<50	-	<50	-	-	-	µg/kg	Subcon
alpha-Hexachlorocyclohexane (HCH) _A	-	-	<50	-	<50	-	-	-	µg/kg	Subcon
Diazinon _A	-	-	<50	-	<50	-	-	-	µg/kg	Subcon
gamma-Hexachlorocyclohexane (HCH / Lindane) _A	-	-	<50	-	<50	-	-	-	µg/kg	Subcon
Heptachlor _A	-	-	<50	-	<50	-	-	-	µg/kg	Subcon
Aldrin _A	-	-	<50	-	<50	-	-	-	µg/kg	Subcon
beta-Hexachlorocyclohexane (HCH) _A	-	-	<50	-	<50	-	-	-	µg/kg	Subcon
Methyl Parathion _A	-	-	<50	-	<50	-	-	-	µg/kg	Subcon
Malathion _A	-	-	<50	-	<50	-	-	-	µg/kg	Subcon
Fenitrothion _A	-	-	<50	-	<50	-	-	-	µg/kg	Subcon
Heptachlor Epoxide _A	-	-	<50	-	<50	-	-	-	µg/kg	Subcon
Parathion (Ethyl Parathion) _A	-	-	<50	-	<50	-	-	-	µg/kg	Subcon
p,p-DDE _A	-	-	<50	-	<50	-	-	-	µg/kg	Subcon
p,p-DDT _A	-	-	<50	-	<50	-	-	-	µg/kg	Subcon
p,p-Methoxychlor _A	-	-	<50	-	<50	-	-	-	µg/kg	Subcon
p,p-TDE (DDD) _A	-	-	<50	-	<50	-	-	-	µg/kg	Subcon
o,p-DDE _A	-	-	<50	-	<50	-	-	-	µg/kg	Subcon
o,p-DDT _A	-	-	<50	-	<50	-	-	-	µg/kg	Subcon
o,p-Methoxychlor _A	-	-	<50	-	<50	-	-	-	µg/kg	Subcon
o,p-TDE (DDD) _A	-	-	<50	-	<50	-	-	-	µg/kg	Subcon
Endosulphan I _A	-	-	<50	-	<50	-	-	-	µg/kg	Subcon
Endosulphan II _A	-	-	<50	-	<50	-	-	-	µg/kg	Subcon
Endosulphan Sulphate _A	-	-	<50	-	<50	-	-	-	µg/kg	Subcon
Endrin _A	-	-	<50	-	<50	-	-	-	µg/kg	Subcon
Ethion _A	-	-	<50	-	<50	-	-	-	µg/kg	Subcon
Dieldrin _A	-	-	<50	-	<50	-	-	-	µg/kg	Subcon
Azinphos-methyl _A	-	-	<50	-	<50	-	-	-	µg/kg	Subcon

Client Project Name: Roade Bypass

					-					
Lab Sample ID	17/06450/9	17/06450/10	17/06450/11	17/06450/12	17/06450/13	17/06450/15	17/06450/16	17/06450/17		
Client Sample No										
Client Sample ID	TP15	TP16	TP16A	TP16A	TP17	WS02	WS04	WS05		
Depth to Top	1.50	0.10	0.20	0.50	0.20	0.20	0.30	0.20		
Depth To Bottom										
Date Sampled	07-Sep-17	07-Sep-17	08-Sep-17	08-Sep-17	07-Sep-17	06-Sep-17	30-Aug-17	30-Aug-17		يو
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil		Method ref
Sample Matrix Code	5A	4AE	4AE	5AE	5AE	5AE	5A	5AE	Units	Meth
PAH 16										
Acenaphthene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-019s
Anthracene _A ^{M#}	<0.02	<0.02	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	A-T-019s
Benzo(a)anthracene ^{M#}	<0.04	<0.04	0.16	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	A-T-019s
Benzo(a)pyrene _A ^{M#}	<0.04	<0.04	0.28	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	<0.05	<0.05	0.32	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	A-T-019s
Benzo(ghi)perylene _A ^{M#}	<0.05	<0.05	0.29	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	<0.07	<0.07	0.12	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	A-T-019s
Chrysene _A ^{M#}	<0.06	<0.06	0.19	<0.06	<0.06	<0.06	<0.06	<0.06	mg/kg	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04	<0.04	0.05	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	A-T-019s
Fluoranthene _A ^{M#}	<0.08	<0.08	0.17	<0.08	<0.08	<0.08	<0.08	<0.08	mg/kg	A-T-019s
Fluorene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	<0.03	<0.03	0.25	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	A-T-019s
Naphthalene _A ^{M#}	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	A-T-019s
Phenanthrene _A ^{M#}	<0.03	<0.03	0.04	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	A-T-019s
Pyrene _A ^{M#}	<0.07	<0.07	0.18	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	A-T-019s
PAH (total 16) _A ^{M#}	<0.08	<0.08	2.07	<0.08	<0.08	<0.08	<0.08	<0.08	mg/kg	A-T-019s

Client Project Name: Roade Bypass

Lab Sample ID	17/06450/9	17/06450/10	17/06450/11	17/06450/12	17/06450/13	17/06450/15	17/06450/16	17/06450/17		
Client Sample No										
Client Sample ID	TP15	TP16	TP16A	TP16A	TP17	WS02	WS04	WS05		
Depth to Top	1.50	0.10	0.20	0.50	0.20	0.20	0.30	0.20		
Depth To Bottom										
Date Sampled	07-Sep-17	07-Sep-17	08-Sep-17	08-Sep-17	07-Sep-17	06-Sep-17	30-Aug-17	30-Aug-17		f
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil		od re
Sample Matrix Code	5A	4AE	4AE	5AE	5AE	5AE	5A	5AE	Units	Method ref
TPH CWG										
Ali >C5-C6 _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Ali >C6-C8 _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Ali >C8-C10 _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Ali >C10-C12 _A [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Ali >C12-C16 _A [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Ali >C16-C21 _A [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Ali >C21-C35 _A [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Total Aliphatics _A	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Aro >C5-C7 _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Aro >C7-C8 _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Aro >C8-C9 _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Aro >C9-C10 _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Aro >C10-C12 _A #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Aro >C12-C16 _A [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Aro >C16-C21 _A #	<0.1	<0.1	0.3	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Aro >C21-C35 _A #	<0.1	<0.1	0.4	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Total Aromatics _A	<0.1	<0.1	0.8	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
TPH (Ali & Aro) _A	<0.1	<0.1	0.8	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
BTEX - Benzene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
BTEX - Toluene _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
BTEX - Ethyl Benzene _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
BTEX - m & p Xylene _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
BTEX - o Xylene _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
MTBE _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s

Client Project Name: Roade Bypass

Lab Sample ID	17/06450/18	17/06450/19	17/06450/21	17/06450/23				
							-	
Client Sample No							-	
Client Sample ID	WS06	WS06	WS08	WS10				
Depth to Top	0.10	1.50	0.40	0.40				
Depth To Bottom								
Date Sampled	05-Sep-17	05-Sep-17	05-Sep-17	06-Sep-17				ef
Sample Type	Soil	Soil	Soil	Soil				Method ref
Sample Matrix Code	5AE	3E	5AE	5A			Units	Meth
% Stones >10mm _A	10.7	<0.1	<0.1	<0.1			% w/w	A-T-044
рН _D ^{M#}	7.66	7.75	8.02	7.97			рН	A-T-031s
Phenols - Total by HPLC _A	0.2	<0.2	<0.2	<0.2			mg/kg	A-T-050s
Total Organic Carbon ^{D##}	1.29	2.03	0.65	0.44			% w/w	A-T-032s
Arsenic ^{D^{M#}}	4	<1	6	6			mg/kg	A-T-024s
Cadmium _D ^{M#}	0.8	<0.5	1.1	0.9			mg/kg	A-T-024s
Copper _D ^{M#}	13	21	13	16			mg/kg	A-T-024s
Chromium _D ^{M#}	22	29	22	28			mg/kg	A-T-024s
Chromium (hexavalent) _D	<1	<1	<1	<1			mg/kg	A-T-040s
Lead _D ^{M#}	17	16	14	13			mg/kg	A-T-024s
Mercury _D	<0.17	<0.17	<0.17	<0.17			mg/kg	A-T-024s
Nickel ^{M#}	19	3	23	30			mg/kg	A-T-024s
Selenium _D ^{M#}	<1	<1	<1	<1			mg/kg	A-T-024s
Zinc _D ^{M#}	55	9	65	50			mg/kg	A-T-024s

Client Project Name: Roade Bypass

Lab Sample ID	17/06450/18	17/06450/19	17/06450/21	17/06450/23				
Client Sample No								
Client Sample ID	WS06	WS06	WS08	WS10				
Depth to Top	0.10	1.50	0.40	0.40				
Depth To Bottom								
Date Sampled	05-Sep-17	05-Sep-17	05-Sep-17	06-Sep-17				¥.
Sample Type	Soil	Soil	Soil	Soil				Method ref
Sample Matrix Code	5AE	3E	5AE	5A			Units	Meth
Asbestos in Soil (inc. matrix)								
Asbestos in soil _A [#]	NAD	NAD	NAD	NAD				A-T-045
Asbestos ACM - Suitable for Water Absorption Test?	N/A	N/A	N/A	N/A				

Client Project Name: Roade Bypass

Lab Sample ID	17/06450/18	17/06450/19	17/06450/21	17/06450/23				
Client Sample No								
Client Sample ID	WS06	WS06	WS08	WS10				
Depth to Top	0.10	1.50	0.40	0.40				
Depth To Bottom								
Date Sampled	05-Sep-17	05-Sep-17	05-Sep-17	06-Sep-17				Ŧ
Sample Type	Soil	Soil	Soil	Soil				Method ref
Sample Matrix Code	5AE	3E	5AE	5A			Units	Meth
РАН 16								
Acenaphthene _A ^{M#}	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-019s
Anthracene _A ^{M#}	<0.02	<0.02	<0.02	<0.02			mg/kg	A-T-019s
Benzo(a)anthracene _A ^{M#}	0.06	<0.04	<0.04	<0.04			mg/kg	A-T-019s
Benzo(a)pyrene _A ^{M#}	0.07	<0.04	<0.04	<0.04			mg/kg	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	0.07	<0.05	<0.05	<0.05			mg/kg	A-T-019s
Benzo(ghi)perylene _A ^{M#}	<0.05	0.08	<0.05	<0.05			mg/kg	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	<0.07	<0.07	<0.07	<0.07			mg/kg	A-T-019s
Chrysene _A ^{M#}	<0.06	<0.06	<0.06	<0.06			mg/kg	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04	<0.04	<0.04	<0.04			mg/kg	A-T-019s
Fluoranthene _A ^{M#}	0.09	<0.08	<0.08	<0.08			mg/kg	A-T-019s
Fluorene _A ^{M#}	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	0.05	0.06	<0.03	<0.03			mg/kg	A-T-019s
Naphthalene _A ^{M#}	<0.03	<0.03	<0.03	<0.03			mg/kg	A-T-019s
Phenanthrene _A ^{M#}	0.04	<0.03	<0.03	<0.03			mg/kg	A-T-019s
Pyrene _A ^{M#}	<0.07	<0.07	<0.07	<0.07			mg/kg	A-T-019s
PAH (total 16) _A ^{M#}	0.41	0.13	<0.08	<0.08			mg/kg	A-T-019s

Client Project Name: Roade Bypass

						1		
Lab Sample ID	17/06450/18	17/06450/19	17/06450/21	17/06450/23				
Client Sample No								
Client Sample ID	WS06	WS06	WS08	WS10				
Depth to Top	0.10	1.50	0.40	0.40				
Depth To Bottom								
Date Sampled	05-Sep-17	05-Sep-17	05-Sep-17	06-Sep-17				Ŧ
Sample Type	Soil	Soil	Soil	Soil				Method ref
Sample Matrix Code	5AE	3E	5AE	5A			Units	Meth
TPH CWG								
Ali >C5-C6 _A #	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-022s
Ali >C6-C8 _A [#]	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-022s
Ali >C8-C10 _A [#]	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-022s
Ali >C10-C12 _A [#]	<0.1	<0.1	<0.1	<0.1			mg/kg	A-T-023s
Ali >C12-C16 _A [#]	<0.1	<0.1	<0.1	<0.1			mg/kg	A-T-023s
Ali >C16-C21 _A [#]	<0.1	<0.1	<0.1	<0.1			mg/kg	A-T-023s
Ali >C21-C35 _A [#]	<0.1	<0.1	<0.1	<0.1			mg/kg	A-T-023s
Total Aliphatics _A	<0.1	<0.1	<0.1	<0.1			mg/kg	A-T-023s
Aro >C5-C7 _A [#]	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-022s
Aro >C7-C8 _A [#]	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-022s
Aro >C8-C9 _A [#]	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-022s
Aro >C9-C10 _A #	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-022s
Aro >C10-C12 _A [#]	<0.1	<0.1	<0.1	<0.1			mg/kg	A-T-023s
Aro >C12-C16 _A [#]	<0.1	<0.1	<0.1	<0.1			mg/kg	A-T-023s
Aro >C16-C21 _A #	<0.1	<0.1	<0.1	<0.1			mg/kg	A-T-023s
Aro >C21-C35 _A #	<0.1	<0.1	<0.1	<0.1			mg/kg	A-T-023s
Total Aromatics _A	<0.1	<0.1	<0.1	<0.1			mg/kg	A-T-023s
TPH (Ali & Aro) _A	<0.1	<0.1	<0.1	<0.1			mg/kg	A-T-023s
BTEX - Benzene _A #	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-022s
BTEX - Toluene _A [#]	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-022s
BTEX - Ethyl Benzene _A [#]	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-022s
BTEX - m & p Xylene _A [#]	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-022s
BTEX - o Xylene _A [#]	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-022s
MTBE _A #	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-022s

REPORT NOTES

General:

This report shall not be reproduced, except in full, without written approval from Envirolab.

All samples contained within this report, and any received with the same delivery, will be disposed of one month after the date of this report.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure and there is insufficient sample to repeat the analysis. These are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

Soil chemical analysis:

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900µS/cm @ 25°C / 11550µS/cm @ 20°C fall outside the calibration range and as such are unaccredited.

Asbestos:

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal,

E = contains roots/twigs.

Key:

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Superscript "M" indicates method accredited to MCERTS.

Subscript "A" indicates analysis performed on the sample as received.

Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

Please contact us if you need any further information.

APPENDIX I LABORATORY CERTIFICATES FOR GROUNDWATER ANALYSIS

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: Issue Number: 17/06888 1

Date: 23 October, 2017

Client:

RSK Environment Ltd Coventry Humber Road, Abbey Park Coventry UK CV3 4AQ

Project Manager: Project Name: Project Ref: Order No: Date Samples Received: Date Instructions Received: Date Analysis Completed: Darren Bench/Michael Lawson Roade Bypass 313583 N/A 09/10/17 11/10/17 22/10/17

Prepared by:

Manshall

Melanie Marshall Laboratory Coordinator Approved by:

lock

lain Haslock Analytical Consultant

Page 1 of 9

Client Project Name: Roade Bypass

Lab Sample ID	17/06888/1	17/06888/2	17/06888/3	17/06888/4	17/06888/5	17/06888/6			
Client Sample No									
Client Sample ID	BH01	BH02	BH04	BH05	WS02	WS10			
Depth to Top	17.17	20.15	9.92	7.00	2.80	3.25			
Depth To Bottom								-	
Date Sampled	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17			
Sample Type	Water - EW		-	od ref					
Sample Matrix Code	N/A	N/A	N/A	N/A	N/A	N/A		Units	Method ref
рН (w) ₄ #	6.76	6.89	6.94	7.01	6.86	7.16		рН	A-T-031w
Electrical conductivity @ 20degC (w) _A #	1347	839	787	1090	1785	2560		µs/cm	A-T-037w
Alkalinity (total) (w) Colorimetry _A [#]	307	296	281	340	291	301		mg/I Ca CO3	A-T-038w
Hardness Total _A [#]	758	434	452	502	1110	1840		mg/I Ca CO3	A-T-049w
Ammoniacal nitrogen (w) _A [#]	0.56	0.49	0.09	0.32	0.05	0.07		mg/l	A-T-033w
Nitrate (w) _A [#]	<0.10	0.12	2.90	<0.10	2.46	0.15		mg/l	A-T-026w
Sulphate (w) _A [#]	471	158	198	259	788	1520		mg/l	A-T-026w
DOC (w) _A [#]	3.7	3.8	4.4	2.9	2.7	2.4		mg/l	A-T-032w
Arsenic (dissolved) _A [#]	<1	<1	<1	1	<1	<1		µg/l	A-T-025w
Boron (dissolved) _A [#]	1400	2220	277	329	67	109		µg/l	A-T-025w
Cadmium (dissolved) _A [#]	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		µg/l	A-T-025w
Calcium (dissolved) _A [#]	240	134	164	166	379	564		mg/l	A-T-049w
Copper (dissolved) _A [#]	<1	1	1	<1	1	2		µg/l	A-T-025w
Chromium (dissolved) _A [#]	1	3	10	<1	7	8		µg/l	A-T-025w
Chromium (hexavalent) (w) _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.05		mg/l	A-T-040w
Iron (dissolved) _A [#]	137	18	19	<10	<10	29		µg/l	A-T-025w
Ferrous iron Fell (w) _A	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		mg/l	Test kit
Ferric iron Felll (w)	0.1	<0.1	<0.1	<0.1	<0.1	<0.1		mg/l	Calc
Lead (dissolved) _A [#]	<1	<1	<1	<1	<1	<1		µg/l	A-T-025w
Magnesium (dissolved) _A [#]	39	24	11	21	40	104		mg/l	A-T-049w
Mercury (dissolved) _A [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		µg/l	A-T-025w
Nickel (dissolved) _A [#]	8	3	8	2	29	24		µg/l	A-T-025w
Selenium (dissolved) _A [#]	1	2	5	<1	24	3		µg/l	A-T-025w
Zinc (dissolved) _A #	31	21	27	<1	40	139		µg/l	A-T-025w

Client Project Name: Roade Bypass

Lab Sample ID	17/06888/1	17/06888/2	17/06888/3	17/06888/4	17/06888/5	17/06888/6			
Client Sample No									
Client Sample ID	BH01	BH02	BH04	BH05	WS02	WS10			
Depth to Top	17.17	20.15	9.92	7.00	2.80	3.25			
Depth To Bottom									
Date Sampled	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17			ч-
Sample Type	Water - EW			od re					
Sample Matrix Code	N/A	N/A	N/A	N/A	N/A	N/A		Units	Method ref
PAH 16MS (w)									
Acenaphthene (w) _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		µg/l	A-T-019w
Acenaphthylene (w) _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		µg/l	A-T-019w
Anthracene (w) _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		µg/l	A-T-019w
Benzo(a)anthracene (w) _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	0.03		µg/l	A-T-019w
Benzo(a)pyrene (w) _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	0.05		µg/l	A-T-019w
Benzo(b)fluoranthene (w) _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	0.04		µg/l	A-T-019w
Benzo(ghi)perylene (w) _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	0.02		µg/l	A-T-019w
Benzo(k)fluoranthene (w) _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	0.02		µg/l	A-T-019w
Chrysene (w) _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	0.03		µg/l	A-T-019w
Dibenzo(ah)anthracene (w) _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		µg/l	A-T-019w
Fluoranthene (w) _A [#]	<0.01	<0.01	0.02	<0.01	<0.01	0.05		µg/l	A-T-019w
Fluorene (w) _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		µg/l	A-T-019w
Indeno(123-cd)pyrene (w) _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	0.03		µg/l	A-T-019w
Naphthalene (w) _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		µg/l	A-T-019w
Phenanthrene (w) _A [#]	<0.01	<0.01	0.02	<0.01	<0.01	0.02		µg/l	A-T-019w
Pyrene (w) _A [#]	<0.01	<0.01	0.02	<0.01	<0.01	0.04		µg/l	A-T-019w
PAH (total 16) (w) _A [#]	<0.01	<0.01	0.06	<0.01	<0.01	0.33		µg/l	A-T-019w
Phenols (speciated HPLC) (w)									
Phenol (w) _A	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		mg/l	A-T-050w
Cresols (w) _A	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		mg/l	A-T-050w
Xylenols (w) _A	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		mg/l	A-T-050w
Resorcinol (w) _A	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		mg/l	A-T-050w
Phenols - Total by HPLC (w) _A	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		mg/l	A-T-050w

Client Project Name: Roade Bypass

Lab Sample ID	17/06888/1	17/06888/2	17/06888/3	17/06888/4	17/06888/5	17/06888/6			
Client Sample No									
Client Sample ID	BH01	BH02	BH04	BH05	WS02	WS10			
Depth to Top	17.17	20.15	9.92	7.00	2.80	3.25			
Depth To Bottom									
Date Sampled	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17			
-	Water - EW			ref					
Sample Type								Units	Method ref
Sample Matrix Code	N/A	N/A	N/A	N/A	N/A	N/A		2	Ň
SVOC (excluding PAH-16) (w)									
2,4,5-Trichlorophenol _A	<2	<2	<1	<1	-	-		µg/I	A-T-052w
2,4,6-Trichlorophenol _A	<2	<2	<1	<1	-	-		µg/l	A-T-052w
2,4-Dichlorophenol _A	<2	<2	<1	<1	-	-		µg/l	A-T-052w
2,4-Dimethylphenol _A	<2	<2	<1	<1	-	-		µg/l	A-T-052w
2,4-Dinitrotoluene _A	<2	<2	<1	<1	-	-		µg/l	A-T-052w
2,6-Dinitrotoluene _A	<2	<2	<1	<1	-	-		µg/l	A-T-052w
2-Chloronaphthalene _A	<2	<2	<1	<1	-	-		µg/l	A-T-052w
2-Chlorophenol _A	<2	<2	<1	<1	-	-		µg/l	A-T-052w
2-Methylnaphthalene _A	<2	<2	<1	<1	-	-		µg/l	A-T-052w
2-Methylphenol _A	<2	<2	<1	<1	-	-		µg/l	A-T-052w
2-Nitrophenol _A	<2	<2	<1	<1	-	-		µg/l	A-T-052w
4-Bromophenyl phenyl ether _A	<2	<2	<1	<1	-	-		µg/l	A-T-052w
4-Chloro-3-methylphenol _A	<2	<2	<1	<1	-	-		µg/l	A-T-052w
Bis(2-chloroisopropyl)ether _A	<2	<2	<1	<1	-	-		µg/l	A-T-052w
4-Methylphenol _A	<2	<2	<1	<1	-	-		µg/l	A-T-052w
4-Nitrophenol _A	<2	<2	<1	<1	-	-		µg/l	A-T-052w
Bis(2-chloroethyl)ether _A	<2	<2	<1	<1	-	-		µg/l	A-T-052w
Bis(2-chloroethoxy)methane _A	<2	<2	<1	<1	-	-		µg/l	A-T-052w
Bis(2-ethylhexyl)phthalate _A	<20	<20	<10	<10	-	-		µg/l	A-T-052w
Butylbenzyl phthalate _A	<2	<2	<1	<1	-	-		µg/l	A-T-052w
Carbazole _A	<2	<2	<1	<1	-	-		µg/l	A-T-052w
Dibenzofuran _A	<2	<2	<1	<1	-	-		µg/l	A-T-052w
n-Dibutylphthalate _A	<2	<2	<1	<1	-	-		µg/l	A-T-052w
n-Dioctylphthalate _A	<20	<20	<10	<10	-	-		µg/l	A-T-052w
n-Nitroso-n-dipropylamine _A	<2	<2	<1	<1	-	-		µg/l	A-T-052w
Diethyl phthalate _A	<2	<2	<1	<1	-	-		µg/l	A-T-052w
Dimethyl phthalate _A	<2	<2	<1	<1	-	-		µg/I	A-T-052w
Hexachlorobenzene _A	<2	<2	<1	<1	-	-		µg/I	A-T-052w
Pentachlorophenol _A	<2	<2	<1	<1	-	-		µg/l	A-T-052w
Phenol _A	<2	<2	<1	<1	-	-		µg/l	A-T-052w
Hexachloroethane _A	<2	<2	<1	<1	-	-		µg/l	A-T-052w
Nitrobenzene _A	<2	<2	<1	<1	-	-		µg/l	A-T-052w

Client Project Name: Roade Bypass

Lab Sample ID	17/06888/1	17/06888/2	17/06888/3	17/06888/4	17/06888/5	17/06888/6			
Client Sample No									
Client Sample ID	BH01	BH02	BH04	BH05	WS02	WS10			
Depth to Top	17.17	20.15	9.92	7.00	2.80	3.25			
Depth To Bottom									
Date Sampled	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17			يە ب
Sample Type	Water - EW			Method ref					
Sample Matrix Code	N/A	N/A	N/A	N/A	N/A	N/A		Units	Meth
Isophorone _A	<2	<2	<1	<1	-	-		µg/l	A-T-052w
Hexachlorocyclopentadiene _A	<2	<2	<1	<1	-	-		µg/l	A-T-052w
Perylene _A	<2	<2	<1	<1	-	-		µg/l	A-T-052w

Client Project Name: Roade Bypass

1							 1		
Lab Sample ID	17/06888/1	17/06888/2	17/06888/3	17/06888/4	17/06888/5	17/06888/6			
Client Sample No									
Client Sample ID	BH01	BH02	BH04	BH05	WS02	WS10			
Depth to Top	17.17	20.15	9.92	7.00	2.80	3.25			
Depth To Bottom									
Date Sampled	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17			
Sample Type	Water - EW			od re					
Sample Matrix Code	N/A	N/A	N/A	N/A	N/A	N/A		Units	Method ref
VOC (w)									
Dichlorodifluoromethane _A #	<1	<1	<1	<1	-	-		µg/l	A-T-006w
Chloromethane _A	<10	<10	<10	<10	-	-		µg/l	A-T-006w
Vinyl Chloride _A [#]	<1	<1	<1	<1	-	-		µg/l	A-T-006w
Bromomethane _A [#]	<1	<1	<1	<1	-	-		μg/l	A-T-006w
Chloroethane _A [#]	<1	<1	<1	<1	-	-		μg/l	A-T-006w
Trichlorofluoromethane _A #	<1	<1	<1	<1	-	-		µg/l	A-T-006w
trans 1,2-Dichloroethene _A #	<1	<1	<1	<1	-	-		µg/l	A-T-006w
Dichloromethane _A	<5	<5	<5	<5	-	-		µg/l	A-T-006w
Carbon Disulphide _A [#]	<1	<1	<1	<1	-	-		µg/l	A-T-006w
1,1-Dichloroethene _A [#]	<1	<1	<1	<1	-	-		μg/l	A-T-006w
1,1-Dichloroethane _A [#]	<1	<1	<1	<1	-	-		µg/l	A-T-006w
cis 1,2-Dichloroethene _A [#]	<1	<1	<1	<1	-	-		µg/l	A-T-006w
Bromochloromethane _A [#]	<5	<5	<5	<5	-	-		µg/l	A-T-006w
Chloroform _A	<1	<1	<1	<1	-	-		µg/l	A-T-006w
2,2-Dichloropropane _A [#]	<1	<1	<1	<1	-	-		µg/l	A-T-006w
1,2-Dichloroethane ₄ [#]	<2	<2	<2	<2	-	-		µg/l	A-T-006w
1,1,1-Trichloroethane _A [#]	<1	<1	<1	<1	-	-		µg/l	A-T-006w
1,1-Dichloropropene _A [#]	<1	<1	<1	<1	-	-		µg/l	A-T-006w
Benzene _A #	<1	<1	<1	<1	-	-		µg/l	A-T-006w
Carbon Tetrachloride _A [#]	<1	<1	<1	<1	-	-		µg/l	A-T-006w
Dibromomethane _A #	<1	<1	<1	<1	-	-		µg/l	A-T-006w
1,2-Dichloropropane _A [#]	<1	<1	<1	<1	-	-		µg/l	A-T-006w
Bromodichloromethane _A #	<10	<10	<10	<10	-	-		µg/l	A-T-006w
Trichloroethene _A #	<1	<1	<1	<1	-	-		µg/l	A-T-006w
cis 1,3-Dichloropropene _A [#]	<1	<1	<1	<1	-	-		µg/l	A-T-006w
trans 1,3-Dichloropropene _A #	<1	<1	<1	<1	-	-		µg/l	A-T-006w
1,1,2-Trichloroethane _A [#]	<1	<1	<1	<1	-	-		μg/l	A-T-006w
Toluene _A #	<1	<1	<1	<1	-	-		μg/l	A-T-006w
1,3-Dichloropropane _A [#]	<1	<1	<1	<1	-	-		µg/l	A-T-006w
Dibromochloromethane _A #	<3	<3	<3	<3	-	-		μg/l	A-T-006w
1,2-Dibromoethane _A [#]	<1	<1	<1	<1	-	-		μg/l	A-T-006w
Tetrachloroethene _A #	<1	<1	<1	<1	-	-		µg/l	A-T-006w

Client Project Name: Roade Bypass

Lab Sample ID	17/06888/1	17/06888/2	17/06888/3	17/06888/4	17/06888/5	17/06888/6			
Client Sample No									
Client Sample ID	BH01	BH02	BH04	BH05	WS02	WS10			
Depth to Top	17.17	20.15	9.92	7.00	2.80	3.25			
Depth To Bottom									
Date Sampled	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17			f
Sample Type	Water - EW			Method ref					
Sample Matrix Code	N/A	N/A	N/A	N/A	N/A	N/A		Units	Meth
1,1,1,2-Tetrachloroethane _A	<1	<1	<1	<1	-	-		µg/l	A-T-006w
Chlorobenzene _A [#]	<1	<1	<1	<1	-	-		µg/l	A-T-006w
Ethylbenzene _A #	<1	<1	<1	<1	-	-		µg/l	A-T-006w
m & p Xylene _A #	<1	<1	<1	<1	-	-		µg/l	A-T-006w
Bromoform _A [#]	<1	<1	<1	<1	-	-		µg/l	A-T-006w
Styrene _A [#]	<1	<1	<1	<1	-	-		µg/l	A-T-006w
1,1,2,2-Tetrachloroethane _A	<1	<1	<1	<1	-	-		µg/l	A-T-006w
o-Xylene _A #	<1	<1	<1	<1	-	-		µg/l	A-T-006w
1,2,3-Trichloropropane _A [#]	<1	<1	<1	<1	-	-		µg/l	A-T-006w
lsopropylbenzene _A [#]	<1	<1	<1	<1	-	-		µg/l	A-T-006w
Bromobenzene _A [#]	<1	<1	<1	<1	-	-		µg/l	A-T-006w
2-Chlorotoluene _A #	<1	<1	<1	<1	-	-		µg/l	A-T-006w
n-propylbenzene _A [#]	<1	<1	<1	<1	-	-		µg/l	A-T-006w
4-Chlorotoluene _A [#]	<1	<1	<1	<1	-	-		µg/l	A-T-006w
1,2,4-Trimethylbenzene _A [#]	<1	<1	<1	<1	-	-		µg/l	A-T-006w
4-lsopropyltoluene _A [#]	<1	<1	<1	<1	-	-		µg/l	A-T-006w
1,3,5-Trimethylbenzene _A [#]	<1	<1	<1	<1	-	-		µg/l	A-T-006w
1,2-Dichlorobenzene _A [#]	<1	<1	<1	<1	-	-		µg/l	A-T-006w
1,4-Dichlorobenzene _A [#]	<1	<1	<1	<1	-	-		µg/l	A-T-006w
sec-Butylbenzene _A [#]	<1	<1	<1	<1	-	-		µg/l	A-T-006w
tert-Butylbenzene _A [#]	<2	<2	<2	<2	-	-		µg/l	A-T-006w
1,3-Dichlorobenzene _A [#]	<1	<1	<1	<1	-	-		µg/l	A-T-006w
n-butylbenzene _A #	<1	<1	<1	<1	-	-		µg/l	A-T-006w
1,2-Dibromo-3-chloropropane _A [#]	<2	<2	<2	<2	-	-		µg/l	A-T-006w
1,2,4-Trichlorobenzene _A [#]	<3	<3	<3	<3	-	-		µg/l	A-T-006w
1,2,3-Trichlorobenzene _A [#]	<3	<3	<3	<3	-	-		µg/l	A-T-006w
Hexachlorobutadiene _A [#]	<1	<1	<1	<1	-	-		µg/l	A-T-006w

Client Project Name: Roade Bypass

Lab Sample ID	17/06888/1	17/06888/2	17/06888/3	17/06888/4	17/06888/5	17/06888/6			
Client Sample No									
Client Sample ID	BH01	BH02	BH04	BH05	WS02	WS10			
Depth to Top	17.17	20.15	9.92	7.00	2.80	3.25			
Depth To Bottom									
Date Sampled	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17	05-Oct-17			
Sample Type	Water - EW			od ref					
Sample Matrix Code	N/A	N/A	N/A	N/A	N/A	N/A		Units	Method ref
ТРН СWG									
Ali >C5-C6 (w) _A #	<1	<1	<1	<1	<1	<1		µg/l	A-T-022w
Ali >C6-C8 (w) _A [#]	<1	<1	<1	<1	<1	<1		µg/l	A-T-022w
Ali >C8-C10 (w) _A [#]	<1	<1	<1	<1	<1	<1		µg/l	A-T-022w
Ali >C10-C12 (w) _A [#]	<5	<5	<5	<5	<5	<5		µg/l	A-T-023w
Ali >C12-C16 (w) _A [#]	<5	<5	<5	<5	<5	<5		µg/l	A-T-023w
Ali >C16-C21 (w) _A [#]	<5	<5	<5	<5	<5	<5		µg/l	A-T-023w
Ali >C21-C35 (w) _A [#]	<5	<5	<5	<5	<5	<5		µg/l	A-T-023w
Total Aliphatics (w) _A	<5	<5	<5	<5	<5	<5		µg/l	A-T-022+23w
Aro >C5-C7 (w) _A [#]	<1	<1	<1	<1	<1	<1		µg/l	A-T-022w
Aro >C7-C8 (w) _A [#]	<1	<1	<1	<1	<1	<1		µg/l	A-T-022w
Aro >C8-C9 (w) _A [#]	<1	<1	<1	<1	<1	<1		µg/l	A-T-022w
Aro >C9-C10 (w) _A [#]	<1	<1	<1	<1	<1	<1		µg/l	A-T-022w
Aro >C10-C12 (w) _A [#]	<5	<5	<5	<5	<5	<5		µg/l	A-T-023w
Aro >C12-C16 (w) _A [#]	<5	<5	<5	<5	<5	<5		µg/l	A-T-023w
Aro >C16-C21 (w) _A [#]	<5	<5	<5	<5	<5	<5		µg/l	A-T-023w
Aro >C21-C35 (w) _A [#]	<5	<5	<5	<5	<5	<5		µg/l	A-T-023w
Total Aromatics (w) _A	<5	<5	<5	<5	<5	<5		µg/l	A-T-022+23w
TPH (Ali & Aro) (w) _A	<5	<5	<5	<5	<5	<5		µg/l	A-T-022+23w
BTEX - Benzene (w) _A [#]	<1	<1	<1	<1	<1	<1		µg/l	A-T-022w
BTEX - Toluene (w) _A [#]	<1	<1	<1	<1	<1	<1		µg/l	A-T-022w
BTEX - Ethyl Benzene (w) _A [#]	<1	<1	<1	<1	<1	<1		µg/l	A-T-022w
BTEX - m & p Xylene (w) _A [#]	<1	<1	<1	<1	<1	<1		µg/l	A-T-022w
BTEX - o Xylene (w) _A [#]	<1	<1	<1	<1	<1	<1		µg/l	A-T-022w
MTBE (w) _A [#]	<1	<1	<1	<1	<1	<1		µg/l	A-T-022w

REPORT NOTES

General:

This report shall not be reproduced, except in full, without written approval from Envirolab.

All samples contained within this report, and any received with the same delivery, will be disposed of one month after the date of this report.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure and there is insufficient sample to repeat the analysis. These are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

Soil chemical analysis:

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900µS/cm @ 25°C / 11550µS/cm @ 20°C fall outside the calibration range and as such are unaccredited.

Asbestos:

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliguot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal,

E = contains roots/twigs.

Key:

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Superscript "M" indicates method accredited to MCERTS.

Subscript "A" indicates analysis performed on the sample as received.

Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

Please contact us if you need any further information.

APPENDIX J HUMAN HEALTH GENERIC ASSESSMENT CRITERIA

Generic assessment criteria for human health: commercial scenario

Background

RSK's generic assessment criteria (GAC) were initially prepared following the publication by the Environment Agency (EA) of soil guideline value (SGV) and toxicological (TOX) reports, and associated publications in 2009⁽¹⁾. RSK GAC were updated following the publication of GAC by LQM/CIEH in 2009⁽²⁾. RSK GAC are periodically revised when updated information on toxicological, land use or receptor parameters is published.

Updates to the RSK GAC: 2015

In 2014, the publication of Category 4 Screening Levels (C4SL)^(3,4), as part of the Defra-funded research project SP1010, included modifications to certain exposure assumptions documented within EA Science Report SC050221/SR3 (herein after referred to as SR3)⁽⁵⁾ used in the generation of SGVs.

C4SL were published for six substances (cadmium, arsenic, benzene, benzo(a)pyrene, chromium VI and lead) for a sandy loam soil type with 6% soil organic matter, based on a low level of toxicological concern (LLTC; see Section 2.3 of research project report SP1010⁽³⁾). Where a C4SL has been published, the RSK GAC duplicates the C4SL published values using all input parameters within the SP1010 final project report⁽³⁾ and associated appendices⁽⁶⁾, and adopts them as GAC for these six substances.

For all other substances the only C4SL exposure modification relevant to a commercial end use are daily inhalation rates.

The RSK GAC have also been revised with updated toxicology published by LQM/CIEH in 2015⁽⁷⁾, where a C4SL has not been published.

RSK GAC derivation for metals and organic compounds

Model selection

Soil assessment criteria (SAC) were calculated using the Contaminated Land Exposure Assessment (CLEA) tool v1.06, supporting EA guidance^(5,8,9) and revised exposure scenarios published for the C4SL⁽³⁾. Groundwater assessment criteria (GrAC) protective of human health via the inhalation pathway were derived using the RBCA 1.3b model. RSK has updated the inputs within RBCA to reflect EA guidance^(1,5,8,9). The SAC and GrAC collectively are termed GAC.

Pathway selection

In accordance with SR3⁽⁵⁾ the commercial scenario considers risks to a female worker who works from the age of 16 to 65 years. It should be noted that this end use is not suitable for a workplace nursery but may be appropriate for a sports centre or shopping centre where children are present. In accordance with Box 3.5, SR3⁽⁵⁾ the pathways considered for production of the SAC in the commercial scenario are

- direct soil and dust ingestion
- dermal contact with soil both indoors and outdoors

• indoor air inhalation from soil and vapour and outdoor inhalation of soil and vapour.

The pathway considered in production of the GrAC is the volatilisation of compounds from groundwater and subsequent vapour inhalation by residents while indoors. Figure 2 illustrates this linkage. Although the outdoor air inhalation pathway is also valid, this contributes little to the overall risks owing to the dilution in outdoor air. Within RBCA, the solubility limit of the chemical restricts the extent of volatilisation, which in turn drives the indoor air inhalation pathway. While the same restriction is not built into the CLEA model, the CLEA model output cells are flagged red where the soil saturation limit has been exceeded.

With respect to volatilisation, the CLEA model assumes a simple linear partitioning of a chemical in the soil between the sorbed, dissolved and vapour phase⁽⁹⁾. The upper boundaries of this partitioning are represented by the maximum aqueous solubility and pure saturated vapour concentration of the chemical. The CLEA model estimates saturated soil concentrations where these limits are reached⁽⁹⁾. The CLEA software uses a traffic light system to identify when individual and/or combined assessment criteria exceed the lower of either the aqueous- or vapour-based soil saturation limits. Model output cells are flagged red where the saturated soil concentration has been exceeded and the contribution of the indoor and outdoor vapour pathway to total exposure is greater than 10%. In this case, further consideration of the following is required⁽⁹⁾:

- Free phase contamination may be present.
- Exposure from the vapour pathways will be over-predicted by the model, as in reality the vapour phase concentration will not increase at concentrations above saturation limits
- Where the vapour pathway contribution is greater than 90%, it is unlikely the relevant health criteria value (HCV) will be exceeded at soil concentrations at least a factor of ten higher than the relevant HCV.

Where the vapour pathway is the predominant pathway (contributes greater than 90% of exposure) or the only exposure route considered and the cell is highlighted red (SAC exceeds saturation limit), the risk based on the assumed conceptual model is likely to be negligible as the vapour risk is assumed to be tolerable at maximum possible soil concentrations. In such circumstances, the vapour pathway exposure should be considered based on the presence of free phase or non-aqueous phase liquid sources and the measured concentrations of volatile organic compounds (VOC) in the vapour phase. Screening could be considered based on setting the SAC as the modelled soil saturation limits. However, as stated within the CLEA handbook⁽⁹⁾, this is likely to not be practical in many cases because of the very low saturation limits and, in any case, is highly conservative.

It should also be noted that for mixtures of compounds, free phase may be present where soil (or groundwater) concentrations are well below saturation limits for individual compounds.

Where the vapour pathway is only one of the exposure pathways considered, an additional approach can then be utilised as detailed within Section 4.12 of the CLEA model handbook⁽⁹⁾, which explains how to calculate an effective assessment criterion manually.

SR3⁽⁵⁾ states that, as a general rule of thumb, it is recognised that estimating vapour phase concentrations from dissolved and sorbed phase contamination by petroleum hydrocarbons are at least a factor of ten higher than those likely to be measured on-site. RSK has therefore applied an empirical subsurface to indoor air correction factor of 10 into the CLEA model chemical database for all petroleum hydrocarbon fractions (including BTEX, trimethylbenzenes and the

polycyclic aromatic hydrocarbons (PAH) naphthalene, acenaphthene and acenaphthylene) to reduce this conservatism.

Input selection

The most up-to-date published chemical and toxicological data was obtained from EA Report SC050021/SR7⁽¹⁰⁾, the EA TOX⁽¹⁾ reports, the C4SL SP1010 project report and associated appendices^(3,6) or the 2015 LQM/CIEH report⁽⁷⁾. Where a C4SL has been published, the RSK GAC have duplicated the C4SL published values using all input parameters within the SP1010 final project report⁽³⁾ and associated appendices⁽⁶⁾, and has adopted them as GAC for these six substances. Toxicological and specific chemical parameters for aromatic hydrocarbon C₈–C₉ (styrene), 1,2,4-trimethylbenzene and methyl tertiary-butyl ether (MTBE) were obtained from the CL:AIRE Soil Generic Assessment Criteria report⁽¹¹⁾.

For TPH, aromatic hydrocarbons C_5-C_8 were not modelled, as this range comprises benzene and toluene, which are modelled separately. The aromatic C_8-C_9 hydrocarbon fraction comprises ethylbenzene, xylene and styrene. As ethylbenzene and xylene are being modelled separately, the physical, chemical and toxicological data for aromatic C_8-C_9 have been taken from styrene.

Owing to the lack of UK-specific data, default information in the RBCA model was used to evaluate MTBE. No published UK data was available for 1,3,5-trimethylbenzene, so information was obtained from the RBCA model. RBCA uses toxicity data for the inhalation pathway in different units to the CLEA model and cannot consider separately the mean daily intake (MDI), occupancy periods or breathing rates. Therefore, the HCV in RBCA was amended to take account of

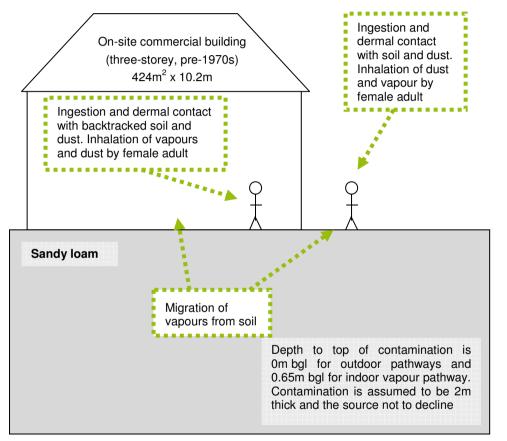
- amendments to the MDI using Table 3.4 of SR2⁽⁸⁾
- an adult weighing 70kg and breathing 14.8m³ air per day in accordance with the UK TOX reports⁽¹²⁾ and SR3⁽⁵⁾. Inhalation rates used in the derivation of the GrAC have not been updated in line with the 2011 USEPA published values⁽¹²⁾; these will be updated in subsequent revisions of the RSK GAC.
- the 50% rule (for petroleum hydrocarbons, trimethylbenzenes and MTBE)^(8,9) where MDI data is not available but background exposure is considered important in the overall exposure.

Physical parameters

For the commercial end use, the CLEA default pre-1970s three-storey office building was used. SR3⁽⁵⁾ notes this commercial building type to be the most conservative in terms of protection from vapour intrusion. The default input building parameters presented in Table 3.10 of SR3⁽⁵⁾ have been used.

The parameters for a sandy loam soil type were used in line with Table 4.4 of SR3⁽⁵⁾. This includes a value of 6% for the percentage of soil organic matter (SOM) within the soil. In RSK's experience, this is rather high for many sites. To avoid undertaking site-specific risk assessments for this SOM, RSK has produced an additional set of GAC for SOM of 1% and 2.5% for all substances using the CLEA tool.

For the GrAC, the depth to groundwater was taken as 2.5m based on RSK's experience of assessing the volatilisation pathway from groundwater. The GrAC were produced using the input parameters in Table 3. Inhalation rates have not been updated.


Summary of modifications to the default CLEA 1.06/SR3⁽⁵⁾ input parameters for a commercial land use

In summary, the RSK commercial GAC were produced using the default input parameters for soil properties, the air dispersion model, building properties and the vapour model detailed in SR3⁽⁵⁾. Modifications to the default SR3⁽⁵⁾ exposure scenarios based on the C4SL exposure scenarios⁽³⁾ are presented in Table 2 below. The sole modification to the default commercial input parameters is the updated inhalation rate.

The final selected GAC are presented by pathway in Table 4 with the combined GAC in Table 5.

Figure 1: Conceptual model for CLEA commercial scenario

Table 1: Exposure assessment parameters for commercial scenario – inputs for CLEA model

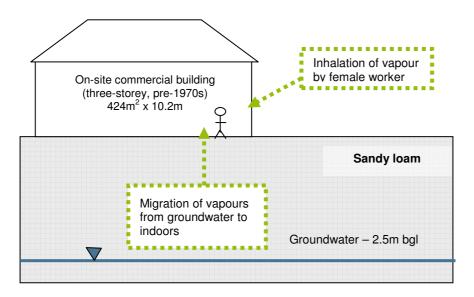

Parameter	Value	Justification
Land use	Commercial	Chosen land use
Receptor	Female worker	Taken as female adult exposed over 49 years from age 16 to 65 years, Box 3.5, SR3 ⁽⁵⁾
Building	Office (pre- 1970)	Key generic assumption given in Box 3.5, SR3 ⁽⁵⁾ . Pre-1970s three-storey office building chosen as it is the most conservative in terms of protection from vapour intrusion (Section 3.4.6, SR3 ⁽⁵⁾)
Soil type	Sandy loam	Most common UK soil type (Section 4.3.1, Table 4.4, SR3 ⁽⁵⁾)
Start age class (AC)	17	AC corresponding to key generic assumption that the critical receptor is a working female adult
End AC	17	exposed over a 49-year period from age 16 to 65 years. Assumption given in Box 3.5, SR3 ⁽⁵⁾
SOM (%)	6	Representative of sandy loam according to EA guidance note dated January 2009 entitled 'Changes We Have Made to the CLEA Framework Documents' ⁽¹³⁾
	1	To provide SAC for sites where SOM < 6% as often
	2.5	observed by RSK
рН	7	Model default

Table 2: Commercial – modified receptor inputs

Parameter	Unit	Value	Justification
Inhalation rate (AC17)	m³ day⁻¹	15.7	Mean value USEPA, 2011 ⁽¹²⁾ ; Table 3.2, SP1010 ⁽³⁾

Figure 2: GrAC conceptual model for RBCA commercial scenario

Table 3: Commercial – RBCA inputs

Parameter	Unit	Value	Justification
Receptor			
Averaging time	Years	49	From Box 3.5, SR3 ⁽⁵⁾
Receptor weight	kg	70	Female adult, Table 4.6, SR3 ⁽⁵⁾
Exposure duration	Years	49	From Box 3.5, SR3 ⁽⁵⁾
Exposure frequency	Days/yr	86.25	Weighted using occupancy period of 9 hours per day for 230 days of the year ((9hours x 230 days)/24 hours)
Soil type – sandy loam			
Total porosity	-	0.53	
Volumetric water content	-	0.33	CLEA value for sandy loam. Parameters for sandy loam from Table 4.4, SR3 ⁽⁵⁾
Volumetric air content	-	0.20	

Parameter	Unit	Value	Justification
Dry bulk density	g cm⁻³	1.21	
Vertical hydraulic conductivity	cm s⁻¹	3.56E-3	CLEA value for saturated conductivity of sandy loam, Table 4.4, SR3 ⁽⁵⁾
Vapour permeability	m²	3.05E-12	Calculated for sandy loam using equations in Appendix 1, SR3 ⁽⁵⁾
Capillary zone thickness	m	0.1	Professional judgement
Building			
Building volume/area ratio	m	9.6	Table 3.10, SR3 ⁽⁵⁾
Foundation area	m²	424	Table 3.10, SR3 ⁽⁵⁾
Foundation perimeter	m	82.40	Based on square root of building area being 20.59m
Building air exchange rate	d⁻¹	24	Table 3.10, SR3 ⁽⁵⁾
Depth to bottom of foundation slab	m	0.15	
Foundation thickness	m	0.15	Table 3.10, SR3 ⁽⁵⁾
Foundation crack fraction	-	3.89E-04	Calculated from floor crack area of 0.165m ² and building footprint of 424m ² in Table 4.21, SR3 ⁽⁵⁾
Volumetric water content of cracks	-	0.33	Assumed equal to underlying soil type in assumption that cracks become filled with soil over time.
Volumetric air content of cracks	-	0.2	Parameters for sandy loam from Table 4.4, SR3 ⁽⁵⁾
Indoor/outdoor differential pressure	Pa	4.4	From Table 3.10, SR3 ⁽⁵⁾

References

- Environment Agency (2009), 'Science Reports SC050021 SGV and TOX reports for: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin-like PCBs'; 'Supplementary information for the derivation of SGV for: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin-like PCBs', and 'Contaminants in soil: updated collation of toxicological data and intake values for humans: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin-like PCBs'. Available at: <u>https://www.gov.uk/government/publications/contaminants-in-soilupdated-collation-of-toxicological-data-and-intake-values-for-humans</u> and <u>https://www.gov.uk/government/publications/land-contamination-soil-guideline-values-</u> sqvs (accessed 4 February 2015)
- 2. Nathanial, C. P., McCaffrey, C., Ashmore, M., Cheng, Y., Gillet, A. G., Ogden, R. C. and Scott, D. (2009), *LQM/CIEH Generic Assessment Criteria for Human Health Risk Assessment*, second edition (Nottingham: Land Quality Press).
- Contaminated Land: Applications in Real Environment (CL:AIRE) (2014). 'Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination', Revision 2, DEFRA research project SP1010.
- 4. Department for Environment, Food and Rural Affairs (Defra) (2014), 'SP1010: Development of Category 4 Screening Levels for assessment of land affected by contamination Policy Companion Document', Revision 2.
- 5. Environment Agency (2009), *Science Report SC050021/SR3. Updated technical background to the CLEA model* (Bristol: Environment Agency).
- 6. Contaminated Land: Applications in Real Environment (CL:AIRE) (2014). 'Appendices C to H). DEFRA research project SP1010'.
- 7. Nathanial, C. P., McCaffrey, C., Gillet, A. G., Ogden, R. C. and Nathanial, J. F. (2015), *The LQM/CIEH S4ULs for Human Health Risk Assessment* (Nottingham: Land Quality Press).
- 8. Environment Agency (2009), *Human health toxicological assessment of contaminants in soil. Science Report Final SC050021/SR2* (Bristol: Environment Agency).
- 9. Environment Agency (2009), *Science Report SC050021/SR4 CLEA Software (version 1.05) Handbook* (Bristol: Environment Agency).
- 10. Environment Agency (2008), *Science Report SC050021/SR7. Compilation of Data for Priority Organic Pollutants for Derivation of Soil Guideline Values* (Bristol: Environment Agency).
- 11. CL:AIRE (2009), *Soil Generic Assessment Criteria for Human Health Risk Assessment* (London: CL:AIRE).
- 12. USEPA (2011), *Exposure factors handbook*, EPA/600/R-090/052F (Washington, DC: Office of Research and Development).
- 13. Environment Agency (2009), 'Changes made to the CLEA framework documents after the three-month evaluation period in 2008', released January 2009.

GENERIC ASSESSMENT CRITERIA FOR HUMAN HEALTH - COMMERCIAL

Table 4

Human health generic assessment criteria by pathway for commercial scenario

	N	GrAC	SAC appropria	ate to pathway SC	OM 1% (ma/ka)	Soil saturation limit	SAC appropr	iate to pathway SON	l 2.5% (ma/ka)	Soil saturation limit	SAC appropr	iate to pathway S0	OM 6% (ma/ka)	Soil saturation
Compound	Notes	(mg/l)	Oral	Inhalation	Combined	(mg/kg)	Oral	Inhalation	Combined	(mg/kg)	Oral	Inhalation	Combined	limit (mg/kg)
•									•					
Metals														
Arsenic	(a,b)	-	6.35E+02	1.25E+03	NR	NR	6.35E+02	1.25E+03	NR	NR	6.35E+02	1.25E+03	NR	NR
Cadmium	(a)	-	NR	NR	4.10E+02	NR	NR	NR	4.10E+02	NR	NR	NR	4.10E+02	NR
Chromium (III) - trivalent	(c)	-	3.31E+05	8.57E+03	8.35E+03	NR	3.31E+05	8.57E+03	8.35E+03	NR	3.31E+05	8.57E+03	8.35E+03	NR
Chromium (VI) - hexavalent	(a.d)	-	7.52E+02	4.91E+01	NR	NR	7.52E+02	4.91E+01	NR	NR	7.52E+02	4.91E+01	NR	NR
Copper		-	1.89E+05	8.96E+04	6.83E+04	NR	1.89E+05	8.96E+04	6.83E+04	NR	1.89E+05	8.96E+04	6.83E+04	NR
Lead	(a)	-	2.32E+03	NR	NR	NR	2.32E+03	NR	NR	NR	2.32E+03	NR	NR	NR
Elemental Mercury (Hg ⁰)	(d)	5.60E-02	NR	1.54E+01	NR	4.31E+00	NR	3.26E+01	NR	1.07E+01	NR	5.80E+01	NR	2.58E+01
Inorganic Mercury (Hg ²⁺)		-	1.18E+03	1.97E+04	1.12E+03	NR	1.18E+03	1.97E+04	1.12E+03	NR	1.18E+03	1.97E+04	1.12E+03	NR
Methyl Mercury (Hg ⁴⁺)		1.00E+02	3.38E+02	2.13E+03	2.92E+02	7.33E+01	3.38E+02	3.87E+03	3.11E+02	1.42E+02	3.38E+02	7.33E+03	3.23E+02	3.04E+02
Nickel	(d)	-	3.06E+03	9.83E+02	NR	NR	3.06E+03	9.83E+02	NR	NR	3.06E+03	9.83E+02	NR	NR
Selenium	(b)	-	1.23E+04	NR	NR	NR	1.23E+04	NR	NR	NR	1.23E+04	NR	NR	NR
Zinc	(b)		7.35E+05	1.97E+08	NR	NR	7.35E+05	1.97E+08	NR	NR	7.35E+05	1.97E+08	NB	NB
Cyanide	(-7		1.69E+04	1.95E+03	1.81E+03	NR	1.69E+04	1.95E+03	1.81E+03	NR	1.69E+04	1.95E+03	1.81E+03	NR
Volatile Organic Compounds														
Benzene	(a)	1.40E+02	1.09E+03	2.79E+01	2.72E+01	1.22E+03	1.09E+03	5.19E+01	4.96E+01	2.26E+03	1.09E+03	1.08E+02	9.80E+01	4.71E+03
Toluene	1	5.90E+02	4.24E+05	6.49E+04	5.63E+04	8.69E+02	4.24E+05	1.43E+05	1.07E+05	1.92E+03	4.24E+05	3.24E+05	1.84E+05	4.36E+03
Ethylbenzene		1.80E+02	1.91E+05	5.89E+03	5.71E+03	5.18E+02	1.91E+05	1.38E+04	1.28E+04	1.22E+03	1.91E+05	3.21E+04	2.75E+04	2.84E+03
Xylene - m		2.00E+02	3.43E+05	6.26E+03	6.15E+03	6.25E+02	3.43E+05	1.47E+04	1.41E+04	1.47E+03	3.43E+05	3.44E+04	3.12E+04	3.46E+03
Xylene - o		1.70E+02	3.43E+05	6.73E+03	6.60E+03	4.78E+02	3.43E+05	1.57E+04	1.50E+04	1.12E+03	3.43E+05	3.65E+04	3.30E+04	2.62E+03
Xylene - p		2.00E+02	3.43E+05	6.03E+03	5.92E+03	5.76E+02	3.43E+05	1.41E+04	1.36E+04	1.35E+03	3.43E+05	3.28E+04	3.00E+04	3.17E+03
Total xylene		2.00E+02	3.43E+05	6.03E+03	5.92E+03	6.25E+02	3.43E+05	1.41E+04	1.36E+04	1.47E+03	3.43E+05	3.28E+04	3.00E+04	3.46E+03
Methyl tertiary-Butyl ether (MTBE)		4.80E+04	5.72E+05	7.54E+04	6.66E+04	2.04E+04	5.72E+05	1.22E+05	1.01E+05	3.31E+04	5.72E+05	2.31E+05	1.65E+05	6.27E+04
Trichloroethene		3.60E+01	9.53E+02	1.23E+00	1.23E+00	1.54E+03	9.53E+02	2.58E+00	2.57E+00	3.22E+03	9.53E+02	5.72E+00	5.69E+00	7.14E+03
Tetrachloroethene		2.30E+02	1.12E+04	1.86E+01	1.86E+01	4.24E+02	1.12E+04	4.17E+01	4.16E+01	9.51E+02	1.12E+04	9.57E+01	9.49E+01	2.18E+03
1,1,1-Trichloroethane		1.30E+03	1.14E+06	6.60E+02	6.60E+02	1.43E+03	1.14E+06	1.35E+03	1.35E+03	2.92E+03	1.14E+06	2.96E+03	2.95E+03	6.39E+03
1,1,1,2 Tetrachloroethane		1.10E+03	1.10E+04	1.09E+02	1.08E+02	2.60E+03	1.10E+04	2.53E+02	2.47E+02	6.02E+03	1.10E+04	5.88E+02	5.59E+02	1.40E+04
1,1,2,2-Tetrachloroethane		1.10E+03	1.10E+04	2.81E+02	2.74E+02	2.67E+03	1.10E+04	5.75E+02	5.46E+02	5.46E+03	1.10E+04	1.26E+03	1.13E+03	1.20E+04
Carbon Tetrachloride		5.70E+00	7.62E+03	2.87E+00	2.87E+02	1.52E+03	7.62E+03	6.29E+00	6.28E+00	3.32E+03	7.62E+03	1.43E+01	1.42E+01	7.54E+03
1,2-Dichloroethane		6.10E+00	2.29E+02	6.73E-01	6.71E-01	3.41E+03	2.29E+02	9.71E-01	9.67E-01	4.91E+03	2.29E+02	1.67E+00	1.65E+00	8.43E+03
Vinyl Chloride		4.10E-01	2.67E+01	5.95E-02	5.94E-02	1.36E+03	2.67E+01	7.70E-02	7.67E-02	1.76E+03	2.67E+01	1.18E-01	1.17E-01	2.69E+03
1,2,4-Trimethylbenzene		5.70E+01	NR	3.29E+02	0.34E-02	4.74E+02	NR	6.41E+02	NR	1.16E+03	NR	1.04E+03	NR	2.76E+03
1,3,5-Trimethylbenzene	(e)	3.80E+01	NR	NR	NR	2.30E+02	NR	NR	NR	5.52E+02	NR	NR	NR	1.30E+03
1,3,5- minetryberizene	(e)	3.80E+01	INIT	INIT	INIT	2.30E+02	INIT	IND	IND	5.52E+02	IND	INFL	INR	1.30E+03
Semi-Volatile Organic Compounds														
Acenaphthene	1	3.20E+00	1.10E+05	2.75E+06	1.06E+05	5.70E+01	1.10E+05	5.36E+06	1.08E+05	1.41E+02	1.10E+05	8.83E+06	1.08E+05	3.36E+02
Acenaphthylene		1.61E+01	1.10E+05	2.68E+06	1.05E+05	8.61E+01	1.10E+05	5.23E+06	1.07E+05	2.12E+02	1.10E+05	8.65E+06	1.08E+05	5.06E+02
Acenaphtnyiene		2.10E-02	5.49E+05	2.00E+00 1.13E+07	5.23E+05	1.17E+00	5.49E+05	2.35E+07	5.36E+05	2.12E+02 2.91E+00	5.49E+05	4.13E+07	5.42E+05	6.96E+02
		3.80E-03	2.84E+02	4.08E+02	1.67E+05		2.84E+02	4.47E+02	1.74E+02	4.28E+00	2.84E+02	4.13E+07 4.67E+02	5.42E+05	1.03E+00
Benzo(a)anthracene		2.00E-03	7.13E+02	4.06E+02	4.43E+01	1.71E+00 1.22E+00	7.13E+01	1.20E+02	4.47E+02	4.28E+00 3.04E+00	7.13E+01	4.67E+02 1.21E+02	4.49E+02	7.29E+00
Benzo(b)fluoranthene		2.60E-03	6.29E+03	1.05E+04	4.43E+01 3.93E+03	1.54E-02	6.29E+03	1.06E+04	3.95E+03	3.85E-02	6.29E+03	1.07E+02	4.49E+01 3.96E+03	9.23E-02
Benzo(g,h,i)perylene Benzo(k)fluoranthene		2.60E-04 8.00E-04	1.88E+03	3.11E+03	1.17E+03	6.87E-02	1.88E+03	3.17E+03	1.18E+03	1.72E+00	1.88E+03	3.21E+03	1.19E+03	9.23E-02 4.12E+00
		2.00E-04	5.67E+02	8.89E+02	3.46E+02	4.40E-01	5.67E+02	9.25E+02	3.52E+02	1.10E+00	5.67E+02	9.47E+02	3.55E+02	2.64E+00
Chrysene														
Dibenzo(a,h)anthracene		6.00E-04	5.67E+00 2.29E+04	9.32E+00 1.89E+06	3.53E+00 2.26E+04	3.93E-03	5.67E+00 2.29E+04	9.52E+00 2.72E+06	3.55E+00 2.27E+04	9.82E-03	5.67E+00 2.29E+04	9.64E+00 3.32E+06	3.57E+00 2.27E+04	2.36E-02
Fluoranthene		2.30E-01 1.90E+00	2.29E+04 7.31E+04	1.89E+06 4.55E+05	2.26E+04 6.30E+04	1.89E+01 3.09E+01	2.29E+04 7.31E+04	2.72E+06 1.06E+06	2.27E+04 6.84E+04	4.73E+01 7.65E+01	2.29E+04 7.31E+04	3.32E+06 2.24E+06	2.27E+04 7.08E+04	1.13E+02 1.83E+02
Fluorene														
Indeno(1,2,3-cd)pyrene	-	2.00E-04	8.10E+02	1.31E+03	5.01E+02	6.13E-02	8.10E+02	1.35E+03	5.06E+02	1.53E-01	8.10E+02	1.37E+03	5.09E+02	3.68E-01
Phenanthrene		5.30E-01	2.28E+04	5.35E+05	2.19E+04	3.60E+01	2.28E+04	1.09E+06	2.24E+04	8.96E+01	2.28E+04	1.86E+06	2.25E+04	2.14E+02
Pyrene		1.30E-01	5.49E+04	4.47E+06	5.42E+04	2.20E+00	5.49E+04	6.46E+06	5.44E+04	5.49E+00	5.49E+04	7.91E+06	5.45E+04	1.32E+01
Benzo(a)pyrene	(a)	3.80E-03	7.68E+01	2.04E+02	5.58E+01	9.11E-01	7.68E+01	2.09E+02	5.61E+01	2.28E+00	7.68E+01	2.11E+02	5.63E+01	5.46E+00
Naphthalene	\vdash	1.90E+01	3.64E+04	1.87E+03	1.78E+03	7.64E+01	3.64E+04	4.39E+03	3.92E+03	1.83E+02	3.64E+04	9.94E+03	7.81E+03	4.32E+02
Phenol		-	1.10E+06	2.65E+04	2.59E+04	2.42E+04	1.10E+06	3.04E+04	2.96E+04	3.81E+04	1.10E+06	3.46E+04	3.35E+04	7.03E+04

Human health generic assessment criteria by pathway for commercial scenario

	No	GrAC	SAC appropria	ate to pathway SC	OM 1% (mg/kg)	Soil saturation limit	SAC appropr	SAC appropriate to pathway SOM 2.5% (mg/kg)			SAC appropriate to pathway SOM 6% (mg/kg)			Soil saturation
Compound	les	(mg/l)	Oral	Inhalation	Combined	(mg/kg)	Oral	Inhalation	Combined	Soil saturation limit (mg/kg)	Oral	Inhalation	Combined	limit (mg/kg)
Total a starlar we had a solution														

Total petroleum hydrocarbons													
Aliphatic hydrocarbons EC5-EC6	3.60E+01	4.77E+06	3.19E+03	3.19E+03	3.04E+02	4.77E+06	5.86E+03	5.86E+03	5.58E+02	4.77E+06	1.21E+04	1.21E+04	1.15E+03
Aliphatic hydrocarbons >EC6-EC8	5.40E+00	4.77E+06	7.79E+03	7.78E+03	1.44E+02	4.77E+06	1.74E+04	1.74E+04	3.22E+02	4.77E+06	3.97E+04	3.96E+04	7.36E+02
Aliphatic hydrocarbons >EC8-EC10	4.30E-01	9.53E+04	2.02E+03	2.00E+03	7.77E+01	9.53E+04	4.91E+03	4.85E+03	1.90E+02	9.53E+04	1.17E+04	1.13E+04	4.51E+02
Aliphatic hydrocarbons >EC10-EC12	3.40E-02	9.53E+04	9.97E+03	9.69E+03	4.75E+01	9.53E+04	2.47E+04	2.29E+04	1.18E+02	9.53E+04	5.89E+04	4.73E+04	2.83E+02
Aliphatic hydrocarbons >EC12-EC16	7.60E-04	9.53E+04	8.26E+04	5.88E+04	2.37E+01	9.53E+04	2.04E+05	8.17E+04	5.91E+01	9.53E+04	4.81E+05	9.02E+04	1.42E+02
Aliphatic hydrocarbons >EC16-EC35 (b)	-	1.58E+06	NR	NR	8.48E+00	1.75E+06	NR	NR	2.12E+01	1.83E+06	NR	NR	5.09E+01
Aliphatic hydrocarbons >EC35-EC44 (b)	-	1.58E+06	NR	NR	8.48E+00	1.75E+06	NR	NR	2.12E+01	1.83E+06	NR	NR	5.09E+01
Aromatic hydrocarbons >EC8-EC9 (styrene)	6.50E+01	2.29E+04	3.66E+04	1.41E+04	6.26E+02	2.29E+04	8.39E+04	1.80E+04	1.44E+03	2.29E+04	1.93E+05	2.04E+04	3.35E+03
Aromatic hydrocarbons >EC9-EC10	6.50E+01	3.81E+04	3.55E+03	3.46E+03	6.13E+02	3.81E+04	8.66E+03	8.11E+03	1.50E+03	3.81E+04	2.05E+04	1.70E+04	3.58E+03
Aromatic hydrocarbons >EC10-EC12	2.50E+01	3.81E+04	1.92E+04	1.62E+04	3.64E+02	3.81E+04	4.69E+04	2.79E+04	8.99E+02	3.81E+04	1.10E+05	3.42E+04	2.15E+03
Aromatic hydrocarbons >EC12-EC16	5.80E+00	3.81E+04	2.02E+05	3.62E+04	1.69E+02	3.81E+04	4.76E+05	3.73E+04	4.19E+02	3.81E+04	1.03E+06	3.78E+04	1.00E+03
Aromatic hydrocarbons >EC16-EC21 (b)	-	2.82E+04	NR	NR	5.37E+01	2.83E+04	NR	NR	1.34E+02	2.84E+04	NR	NR	3.21E+02
Aromatic hydrocarbons >EC21-EC35 (b)	-	2.84E+04	NR	NR	4.83E+00	2.84E+04	NR	NR	1.21E+01	2.84E+04	NR	NR	2.90E+01
Aromatic hydrocarbons >EC35-EC44 (b)	-	2.84E+04	NR	NR	4.83E+00	2.84E+04	NR	NR	1.21E+01	2.84E+04	NR	NR	2.90E+01

Notes:

EC - equivalent carbon. GrAC - groundwater screening value. SAC - soil screening value.

The CLEA model output is colour coded depending upon whether the soil saturation limit has been exceeded.

Calculated SAC exceeds soil saturation limit and may significantly affect the interpretation of any exceedances as the contribution of the indoor and outdoor vapour pathway to total exposure is >10%. This shading has also been used for the RBCA output where the theoretical solubility limit has been exceeded. Calculated SAC exceeds soil saturation limit but the exceedance will not affect the SAC significantly as the contribution of the indoor and outdoor vapour pathway to total exposure is <10%. Calculated SAC does not exceed the soil saturation limit.

For consistency where the theoretical solubility limit within RBCA has been exceeded in production of the GrAC, these cells have also been hatched red and the GrAC set at the solubility limit.

The SAC for organic compounds are dependant upon soil organic matter (SOM) (%) content. To obtain SOM from total organic carbon (TOC) (%) divide by 0.58. 1% SOM is 0.58% TOC. DL Rowell Soil Science: Methods and Applications, Longmans, 1994. SAC for TPH fractions, polycyclic aromatic hydrocarbons, MTBE, BTEX and trimethylbenzene compounds were produced using an attenuation factor for the indoor air inhalation pathway of 10 to reduce conservatism associated with the vapour inhalation pathway (Section 10.1.1, SR3)

(a) SAC for arsenic, benzene, benzo(a)pyrene, cadmium, chromium VI and lead are derived using the C4SL toxicology data.

(b) SAC for selenium should not include the inhalation pathway as no expert group HCV has been derived; aliphatic and aromatic hydrocarbons >EC16 should not include inhalation pathway due to their non-volatile nature and inhalation exposure being minimal (oral, dermal and inhalation exposure is compared to the oral HCV); arsenic should only be based on oral contribution (rather than combined) owing to the relative small contribution from inhalation in accordance with the SGV report. The Oral SAC should be adopted for zinc and benzo(a)pyrene.

(c) SAC for CrIII should be based on the lower of the oral and inhalation SAC (see LQM/CIEH 2015 Section 6.8)

(d) SAC for elemental mercury, chromium VI and nickel should be based on the inhalation pathway only.

(e) SAC for 1,3,5-trimethylbenzene is not recorded owing to the lack of toxicological data, SAC for 1,2,4 trimethylbenzene may be used.

Table 5 Human Health Generic Assessment Criteria for Commercial Scenario

Compound	GrAC for Groundwater (mg/l)	SAC for Soil SOM 1% (mg/kg)	SAC for Soil SOM 2.5% (mg/kg)	SAC for Soil SOM 6% (mg/kg)
Metals				
Arsenic Cadmium	-	640 410	640 410	640 410
Chromium (III) - trivalent		8,600	8,600	8,600
Chromium (VI) - hexavalent	-	49	49	49
Copper	-	68,000	68,000	68,000
	-	2,320	2,320	2,320
Elemental Mercury (Hg ⁰) Inorganic Mercury (Hg ²⁺)	0.056	15 (4) 1,120	33 (11) 1,120	58 (26) 1,120
Methyl Mercury (Hg ⁴⁺)	100	290 (73)	310	320
Nickel	-	980	980	980
Selenium	-	12,000	12,000	12,000
Zinc	-	740,000	740,000	740,000
Cyanide	-	1,800	1,800	1,800
Volatile Organic Compounds				
Benzene	140	27	50	98
Toluene	590	56,000 (869)	107,000 (1,916)	184,000 (4,357)
Ethylbenzene Kylene - m	180 200	6,000 (518) 6,200 (625)	13,000 (1,216) 14,100 (1,474)	27,000 (2,844) 31,200 (3,457)
Kylene - o	170	6,600 (478)	15,000 (1,120)	33,000 (2,618)
Kylene - p	200	5,900 (576)	13,600 (1,353)	30,000 (3,167)
Total xylene	200	5,900 (625)	13,600 (1,474)	30,000 (3,457)
Methyl tertiary-Butyl ether (MTBE)	48000	67,000 (20,400)	101,000 (33,100)	165,000 (62,700)
Frichloroethene	36 230	20	3 40	<u>6</u> 90
,1,1-Trichloroethane	1300	700	1,300	3,000
,1,1,2 Tetrachloroethane	1100	110	250	560
,1,2,2-Tetrachloroethane	1100	270	550	1,130
Carbon Tetrachloride	5.7	2.9	6.3	14.2
,2-Dichloroethane /inyl Chloride	6.1 0.41	0.67	0.97 0.08	1.65 0.12
,2,4-Trimethylbenzene	57	330	640	1,040
,3,5-Trimethylbenzene	38	NR	NR	NR
Semi-Volatile Organic Compounds				
Acenaphthene Acenaphthylene	3.2 16	110,000 (57) 110,000 (86)	110,000 (141) 110,000 (212)	<u>110,000</u> 110,000
Anthracene	0.021	520,000	540,000	540.000
Benzo(a)anthracene	0.0038	170	170	180
Benzo(b)fluoranthene	0.002	44	45	45
Benzo(g,h,i)perylene	0.00026	3,900	3,900	4,000
Benzo(k)fluoranthene Chrysene	0.0008	1,200 350	1,200 350	1,200 350
Dibenzo(a,h)anthracene	0.002	3.5	3.6	3.6
Fluoranthene	0.23	23,000	23,000	23,000
Fluorene	1.9	63,000 (31)	68,000	71,000
ndeno(1,2,3-cd)pyrene	0.0002	500	510	510
Phenanthrene Pyrene	0.53 0.13	22,000 54,000	22,000 54,000	23,000 54,000
Benzo(a)pyrene	0.0038	77	77	77
Naphthalene	19	1,800 (76)	3,900 (183)	7,800 (432)
Phenol	•	440*	690*	1,300*
Fatal Batraloum Hudrosorhona				
Fotal Petroleum Hydrocarbons Aliphatic hydrocarbons ECs-ECs	36	3,200 (304)	5,900 (558)	12.100 (1.150)
Aliphatic hydrocarbons $>EC_6-EC_8$	5.4	7,800 (144)	17,400 (322)	39,600 (736)
Aliphatic hydrocarbons > EC_8 - EC_{10}	0.43	2,000 (78)	4,800 (190)	11,300 (451)
Aliphatic hydrocarbons > EC_{10} - EC_{10}	0.034		22,900 (118)	
Aliphatic hydrocarbons >EC ₁₀ -EC ₁₂ Aliphatic hydrocarbons >EC ₁₂ -EC ₁₆	0.034	9,700 (48) 59,000 (24)	, ,	47,300 (283)
Aliphatic hydrocarbons >EC ₁₂ -EC ₁₆ Aliphatic hydrocarbons >EC ₁₆ -EC ₃₅	0.00076	1,000,000**	82,000 (59) 1,000,000**	90,000 (142) 1,000,000**
Aliphatic hydrocarbons >EC ₁₆ -EC ₃₅ Aliphatic hydrocarbons >EC ₃₅ -EC ₄₄	-	1,000,000**	1,000,000**	1,000,000**
Aromatic hydrocarbons >EC ₃₅ -EC ₄₄ Aromatic hydrocarbons >EC ₈ -EC ₉ (styrene)	- 65	14,000 (626)	18,000 (1,440)	20,000 (3,350)
Aromatic hydrocarbons >EC ₈ -EC ₉ (Styrene) Aromatic hydrocarbons >EC ₉ -EC ₁₀	65	3,500 (613)	8,100 (1,503)	17,000 (3,580)
Aromatic hydrocarbons >EC_10-EC_12	25	16,000 (364)	28,000 (899)	34,000 (2,150)
Aromatic hydrocarbons >EC ₁₂ -EC ₁₆	5.8	36,000 (169)	37,000	38,000
Aromatic hydrocarbons >EC ₁₆ -EC ₂₁	-	28,000	28,000	28,000
Aromatic hydrocarbons >EC ₂₁ -EC ₃₅ Aromatic hydrocarbons >EC ₃₅ -EC ₄₄	-	28,000	28,000 28,000	28,000
Inters: Ceneric assessment criteria not calculated owing to k IR - SAC for 1,3,5-trimethylbenzene is not recorded ow C - equivalent carbon. GrAC - groundwater assessmen The GAC for Phenol is based on a threshold which is g Denoted SAC calculated exceeds 100% contaminant The SAC for organic compounds are dependent on Soil 1% SOM is 0.58% TOC. DL Rowell Soil Science: M SAC for TPH fractions, polycyclic aromatic hydrocarbon air inhalation pathway of 10 to reduce conservatism	ing to the lack of toxicological data, \$ tt criteria. SAC - soil assessment crit protective of direct contact (SC05002 hence 100% (1,000,000mg/kg) has Organic Matter (SOM) (%) content. ethods and Applications, Longmans, s, MTBE, BTEX and trimethylbenzene	SAC for 1,2,4 trimethylbenzene may eria. 1/Phenol SGV report) been taken as SAC To obtain SOM from total organic o 1994. e compounds were produced using	y be used arbon (TOC) (%) divide by 0.58.	
(VALUE IN BRACKETS) RSK has adopted an approach for petroleum hydrocarb SAC with the corresponding solubility or vapour saturati (VALUE IN BRACKETS) conservative since concentrations of the chemical are v at the point of exposure (i.e. indoor air) provided free-pr	on limits given in brackets. For consistency where the GrAC ex ery unlikely to be at sufficient concen	hereby the concentration modelled acceeds the solubility limit, GrAC has	for each petroleum hydrocarbon frag	

APPENDIX K GENERIC ASSESSMENT CRITERIA FOR PHYTOTOXIC EFFECTS

APPENDIX D GENERIC ASSESSMENT CRITERIA FOR PHYTOTOXIC EFFECTS

Several compounds can inhibit plant growth; hence it is important to have generic assessment criteria (GAC) to promote healthy plant growth. In the absence of other published GAC, the GAC have been obtained from legislation (UK and European) and guidance related to the use of sewage sludge on agricultural fields.

The Council of European Communities Sewage Sludge Directive (86/278/EEC) dated 1986, has been transposed into UK law by Statutory Instrument No. 1263, The Sludge (use in Agriculture) Regulations 1989 (Public Health England, Wales and Scotland), as amended in 1990 and The Sludge (use in Agriculture) Regulations (Northern Ireland) SR No, 245, 1990. In addition the Department of Environment (DoE) produced a Code of Practice (CoP) (Updated 2nd Edition) in 2006 which provided guidance on the application of sewage sludge on agricultural land (however the status of this document is unclear as it is on the archive section of the Defra website).

The directive seeks to encourage the use of sewage sludge in agriculture and to regulate its use in such a way as to "*prevent harmful effects on soil, vegetation, animals and man*". To this end, it prohibits the use of <u>untreated sludge</u> on agricultural land unless it is injected or incorporated into the soil. Treated sludge is defined as having undergone "biological, chemical or heat treatment, long-term storage or any other appropriate process so as significantly to reduce its fermentability and the health hazards resulting from its use". To provide protection against potential health risks from residual pathogens, sludge must not be applied to soil in which fruit and vegetable crops are growing, or less than ten months before fruit and vegetable crops are to be harvested. Grazing animals must not be allowed access to grassland or forage land less than three weeks after the application of sludge.

The specified limits of concentrations of selected elements in soil are presented in Table 4 of the updated 2nd Edition of the DoE Code of Practice and are designed to protect plant growth. It is noted that these values are more stringent than the values set in current UK regulations. However since they were amended following recommendations from the Independent Scientific Committee in 1993. (MAFF/DOE 1993). The GAC are presented in Table 1.

Determinant	Generic assessment criteria (mg/kg)					
	рН 5.0 < 5.5	рН 5.5 < 6.0	рН 6.0 < 7.0	pH >7.0		
Zinc	200	200	200	300		
Copper	80	100	135	200		
Nickel	50	60	75	110		
Lead	300	300	300	300		
Cadmium	3	3	3	3		
Mercury	1	1	1	1		

Table 1: Generic assessment criteria

Note: Only compounds with assessment criteria documented within the Directive 86/278/EEC have been included, although criteria for 5 additional compounds have been presented within the 2006 CoP.

APPENDIX L GENERIC ASSESSMENT CRITERIA FOR CONTROLLED WATERS

GENERIC ASSESSMENT CRITERIA FOR CONTROLLED WATERS

The water environment in the United Kingdom is protected under a number of regulatory regimes. The relevant environmental regulator is consulted where there may be a risk that pollution of 'controlled waters' may occur or may have occurred in the past. Controlled waters are coastal waters, inland freshwaters and groundwater. The EU Water Framework Directive (WFD) (2000/60/EC) is implemented via domestic regulations and guidance, covering aspects of groundwater, surface water and drinking water supply policy. Domestic legislation and guidance will vary across the United Kingdom. Therefore, the relevant legislation for England, Wales, Northern Ireland and Scotland should be reviewed, alongside guidance provided by the Environment Agency (EA), Natural Resource Wales (NRW), the Scottish Environmental Protection Agency (SEPA) or the Northern Ireland Environment Agency (NIEA), as appropriate.

The main objectives of the protection and remediation of groundwater under threat from land contamination are set out in the Environment Agency's Groundwater Protection: Principles and Practice (GP3) document⁽¹⁾. When assessing risks to groundwater the following need to be taken into consideration:

- Where pollutants have not yet entered groundwater, all necessary and reasonable measures must be taken to
 - prevent the input of hazardous substances into groundwater (see description of hazardous substances below)
 - limit the entry of other (non-hazardous) pollutants into groundwater so as to avoid pollution, and to avoid deterioration of the status of groundwater bodies or sustained, upward trends in pollutant concentration.
- Where hazardous substances or non-hazardous pollutants have already entered groundwater, the priority is to
 - minimise further entry of hazardous substances and non-hazardous pollutants into groundwater
 - take necessary and reasonable measures to limit the pollution of groundwater or impact on the status of the groundwater body from the future expansion of a contaminant 'plume', if necessary by actively reducing its extent if the economic, social and environmental benefits of doing so outweigh the costs.

DEFINITIONS

Hazardous substances are defined in the Water Framework Directive 2000/60/EC as 'substances or groups of substances that are toxic, persistent and liable to bio-accumulate, and other substances or groups of substances that give rise to an equivalent level of concern.' All List 1 substances under the old Groundwater Directive (80/68/EEC) are hazardous substances, all radioactive substances are hazardous substances.

Non-hazardous substances are defined as 'substances capable of causing pollution that have not been classified as hazardous substances'. The non-hazardous list of pollutants does not simply replace the old WFD List II but includes a wider range of pollutants.

For the current list of classified substances please visit the UKTAG website www.wfduk.org./jagdag/

When assessing the risks to surface waters, various standards apply, including Environmental Quality Standards (EQS) which are protective of the water ecology.

The Water Supply (Water Quality) Regulations⁽²⁾ are the primary source for assessing water bodies that may be used for public water supplies. The Private Water Supplies Regulations⁽³⁾ may be applicable in some cases.

This appendix presents the generic assessment criteria (GAC) that RSK considers are suitable for assessing risks to controlled waters.

The RSK GAC for controlled waters are presented in Table 1. In line with the Environment Agency's Remedial Targets Methodology, the GAC for controlled waters are termed 'target concentrations'.

The target concentration can be derived by several means with consideration to

- whether the substance is classified as hazardous or non-hazardous by the EU under the WFD (2000/60/EC) and Groundwater Daughter Directive (2006/118/EC) implemented though the Environmental Permitting Regulations 2010
- background concentrations in the aquifer
- published guidance such as EQS that are protective of ecology or The Water Supply (Water Quality) Regulations 2010 that are protective of drinking water
- minimum reporting values (MRV) (or method detection limits if MRV are not provided).

It is important to remember that the WFD and GP3⁽¹⁾ guidance allow a risk-based and a costbenefit approach to be applied to groundwater contamination. Exceedance of any target concentration does not necessarily imply that an unacceptable risk exists or that remediation is required either on a technical or cost-benefit basis. If pollutant concentrations at a site exceed target concentrations please speak to a member of the QRA group who will assist in making an appropriate assessment and recommendations.

Table 1: Target concentrations for controlled waters

Analytes in bold are hazardous, *analytes in italics are non-hazardous*, analytes in plain text are unclassified; according to JAGDAG Determination List June 2010 (revised June 2012).

Target concentrations shaded in	GREEN are statutory values usually for drinking water or a surface watercourse	ORANGE are non-statutory values
---------------------------------	--	---------------------------------

	Target concentrations (mg/l)						
Determinant	Minimum	UK drinking water	EQS or best equivalent				
	reporting standard or best value equivalent		Freshwater	Transitional (estuaries) and coastal waters			
Metals							
Arsenic	-	0.01 ⁽²⁾	0.05 ^(5a)	0.025 ^(5a)			
Cadmium	0.0001 ⁽⁶⁾	0.005 ⁽²⁾	≤0.00008, 0.00008, 0.00009, 0.00015, 0.00025 ^(5b)	0.0002 ^(15c)			
Chromium (total)	-	0.05 ⁽²⁾	Sum values for chromium III and VI				
Chromium (III)		Use value for total chromium	0.0047 ^(5a)	-			
Chromium (VI)	_		0.0034 ^(5a)	0.0006 ^(5a)			
				0.00376 dissolved, where DOC ≤1mg/l ⁽⁷⁾			
Copper	-	2.0 ⁽²⁾	0.001 bioavailable ⁽⁷⁾	0.00376 + (0.002677 x ((DOC/2) – 0.0005)) µg/l dissolved, where DOC >1mg/l ⁽⁷⁾			
Lead	-	0.025 (before 25/12/2013), 0.01 (after 25/12/2013) ⁽²⁾	0.0072 ^(5c)	0.0072 ^(5c)			

	Target concentrations (mg/l)						
Determinant	Minimum	UK drinking water	EQS or best equivalent				
	reporting value	standard or best equivalent	Freshwater	Transitional (estuaries) and coastal waters			
Mercury	0.00001 ⁽⁶⁾	0.001 ⁽²⁾	0.00005 ^(5c)	0.00005 ^(5c)			
Nickel	-	0.02 ⁽²⁾	0.02 ^(5c)	0.02 ^(5c)			
Selenium	-	0.01 ⁽²⁾	-	-			
Zinc	-	3 ⁽⁴⁾	0.0109 bioavailable plus ambient background concentration (dissolved) ⁽⁷⁾	0.0068 dissolved plus ambient background concentration ⁽⁷⁾			
		Chlorinated solvents					
Trichloroethene	0.0001 ⁽⁶⁾	0.01 ⁽²⁾	0.01 ^(5c)	0.01 ^(5c)			
Tetrachloroethene	0.0001 ⁽⁶⁾	0.01 ⁽²⁾	0.01 ^(5c)	0.01 ^(5c)			
Tetrachloroethane	-	-	0.14 ⁽¹⁷⁾	-			
1,1,1-Trichloroethane	0.0001 ⁽⁶⁾	-	0.1 ^(5c)	0.1 ^(5c)			
1,1,2-Trichloroethane	0.0001 ⁽⁶⁾	-	0.4 ^(5c)	0.3 ^(5c)			
Carbon tetrachloride (tetrachloromethane)	0.0001 ⁽⁶⁾	0.003 ⁽²⁾	0.012 ^(5c)	0.012 ^(5c)			
1,2-Dichloroethane	0.001 ⁽⁶⁾	0.003 ⁽²⁾	0.01 ^(5c)	0.01 ^(5c)			
Vinyl chloride (chloroethene)	-	0.0005 ⁽²⁾	-	-			
Trihalomethanes	-	0.1 ^(2, 8)	-	-			
Chloroform (trichloromethane) (one of the trihalomethanes included above)	0.0001 ⁽⁶⁾	0.1 ^(2, 8)	0.0025 ^(5c)	0.0025 ^(5c)			

	Target concentrations (mg/l)						
Determinant	Minimum	UK drinking water	EQS or best equivalent				
	reporting standard or best value equivalent		Freshwater	Transitional (estuaries) and coastal waters			
	P	olycyclic aromatic hydrocarb	ons				
Acenaphthene	-	-	0.0058	(9)			
Acenaphthylene	-	-	0.0058	(9)			
Anthracene	-	-	0.0001 ^(5c)	0.0001 ^(15c)			
Benzo(a)anthracene	-	-	0.00001	8 ⁽⁹⁾			
Benzo(b)fluoranthene	-		0.00003 ^(15f)	0.00003 ^(5f)			
Benzo(k)fluoranthene	-		0.00003	0.00003			
Benzo(g,h,i)perylene	-	0.0001 ⁽²⁾	0.000002 ^(15g)	0.000002 ^(5g)			
Indeno(1,2,3-cd)pyrene	-		0.000002` ~	0.00002			
Chrysene	-	-	0.00001	(9)			
Dibenzo(a,h)anthracene	-	-	0.00001	(9)			
Fluoranthene	-	-	0.0001 ^(5c)	0.0001 ^(5c)			
Fluorene	-	-	0.0021	(9)			
Phenanthrene	-	-	0.003 ⁽⁵))			
Pyrene	-	-	0.00004	(9) r			
Benzo(a)pyrene	-	0.00001 ⁽²⁾	0.00005 ^(5c)	0.00005 ^(5c)			
Naphthalene	-	-	0.0024 ^(5c)	0.0012 ^(15c)			
		Petroleum hydrocarbons					
Total petroleum hydrocarbons	-	0.01 ⁽¹¹⁾	0.01 ^{(10,}	11)			
Benzene	0.001 ⁽⁶⁾	0.001 ⁽²⁾	0.01 ^(5c)	0.008 ^(5c)			

	Target concentrations (mg/l)						
Determinant	Minimum	UK drinking water	EQS or best equivalent				
	reporting value	standard or best equivalent	Freshwater	Transitional (estuaries) and coastal waters			
Toluene	0.004 ⁽⁶⁾	0.7 ⁽¹²⁾	0.074 ⁽⁷⁾	0.074 ⁽⁷⁾			
Ethylbenzene	-	0.3 ⁽¹²⁾	0.02 ⁽¹⁴⁾	0.02 ⁽¹⁴⁾			
Xylene	0.003 ⁽⁶⁾	0.5 ⁽¹²⁾	0.03 ^(5c)	0.03 ^(15c)			
Methyl tertiary butyl ether (MTBE)	-	0.015 ⁽¹³⁾					
	·	Pesticides and herbicides					
Aldrin	0.000003 ⁽⁶⁾	0.00003 ⁽²⁾					
Dieldrin	0.003 ⁽⁶⁾	0.00003 ⁽²⁾	0.00001 ^(5d)	0.000005 ^(5d)			
Endrin	0.000003 ⁽⁶⁾	0.0006 ⁽¹²⁾	0.00001	0.00005			
Isodrin	0.000003 ⁽⁶⁾	-					
Heptachlor	-	0.00003 ⁽²⁾					
Heptachlor epoxide	-	0.00003 ⁽²⁾					
Other individual pesticides	-	0.0001 ⁽²⁾					
Total pesticides	-	0.0005 ⁽²⁾					
Total DDT	0.000006 ⁽⁶⁾	0.001 ⁽¹²⁾	0.000025 ^(5c)	0.000025 ^(15c)			
Azinphos – methyl	0.000001 ⁽⁶⁾	-	0.00001 ⁽¹⁾				
Cyfluthrin	0.0001 ⁽⁶⁾	-	0.000001	14)			
Demetons	0.00005 ⁽⁶⁾	-	0.0005 ⁽¹⁴⁾				
Dichlorvos	-	-	0.000001 ^(5c)	0.00004 ^(5c)			
Dimethoate	0.00001 ⁽⁶⁾	-	0.00048 ^(5a)	0.00048 ^(5a)			
Endosulphan	0.000005 ⁽⁶⁾	-	0.000005 ^(5c)	0.0000005 ^(5c)			

	Target concentrations (mg/l)						
Determinant	Minimum	UK drinking water	EQS or best ec	equivalent			
	reporting value	standard or best equivalent	Freshwater	Transitional (estuaries) and coastal waters			
Fenitrothion	0.000001 ⁽⁶⁾	-	0.00001 ^(5c)	0.00001 ^(5c)			
Flucofuron	0.0001 ⁽⁶⁾	-	0.001 ⁽¹⁴)			
Malathion	0.000001 ⁽⁶⁾	-	0.00001 ^(5c)	0.00002 ^(5c)			
Mevinphos	0.000005 ⁽⁶⁾	-	0.00002 ⁽¹⁴⁾	-			
Omethoate	0.0001 ⁽⁶⁾	-	0.00001(14)			
PCSDs (cyfluthrin, sulcofuron, flucofuron and permethrin)	-	-	0.00005 ⁽¹⁴⁾				
Permethrin	0.000001 ⁽⁶⁾	-	0.00001 ^(5a)	0.00001 ⁽⁵⁾			
Sulcofuron	0.0001 ⁽⁶⁾	-	0.025 ⁽¹⁴⁾				
Triazaphos	0.0001 ⁽⁶⁾	-	0.00005	(15)			
Atrazine	0.00003 ⁽⁶⁾	-	0.0006 ^(5c)	0.0006 ^(5c)			
Simazine	0.00003 ⁽⁶⁾	-	0.001 ^(5c)	0.001 ^(5c)			
Bentazone	0.1 ⁽⁶⁾	-	0.5 ^(5c)	0.5 ^(5a)			
Linuron	0.0001 ⁽⁶⁾	-	0.0005 ^(5a)	0.0005 ^(5a)			
Месоргор	0.00004 ⁽⁶⁾	-	0.018 ^(5a)	0.018 ^(5a)			
Trifluralin	0.00001 ⁽⁶⁾	-	0.00003 ^(5c)	0.00003 ^(5c)			
		Miscellaneous					
Cyanide (Hydrogen cyanide)	-	0.05 ⁽²⁾	0.001 ^(5a)	0.001 ^(5a)			
Phenol	0.0005 ⁽⁶⁾	-	0.0077 ^(5a)	0.0077 ^(5a)			
Sodium	-	200 ⁽²⁾	-				

	Target concentrations (mg/l)						
Determinant	Minimum	UK drinking water	EQS or best equivalent				
	reporting value	standard or best equivalent	Freshwater	Transitional (estuaries) and coastal waters			
Chloride	-	250 ⁽²⁾	250 ⁽¹⁴⁾	-			
Total ammonia ^{\$} (ammonium (as NH₄ ⁺) plus ammonia (NH ₃)	-	0.5 ⁽²⁾	0.3 ⁽¹⁶⁾				
Ammonia un-ionised (NH ₃)	-	-	-	0.021 ⁽⁷⁾			
Sulphate	-	250 ⁽²⁾	400 ⁽¹⁴⁾	-			
Iron	-	0.20 ⁽²⁾	1 ^(5a)	1 ^(5a)			
Manganese	-	0.05 ⁽²⁾	0.123 bioavailable ⁽⁷⁾ No EQS requir				
Aluminium	-	0.2 ⁽²⁾	-				
Nitrate (as NO ₃)	-	50 ⁽²⁾	-				
Nitrite (as NO ₂)	-	0.1 ⁽²⁾	0.01 ⁽¹⁷⁾ -				

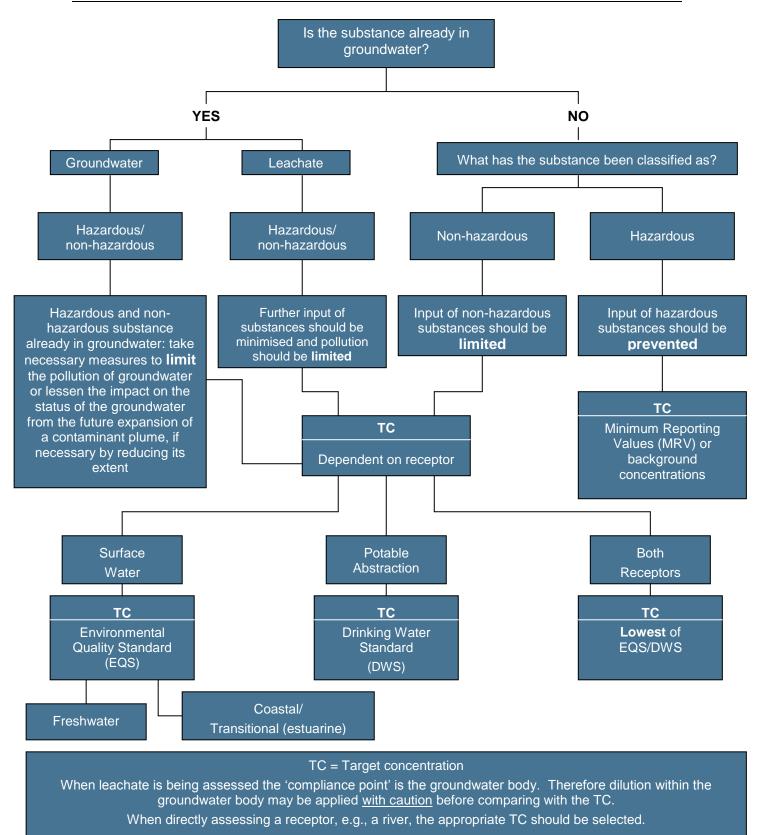
Analytes in bold are hazardous, analytes in italics are non hazardous, analytes in plain text are unclassified. According to JAGDAG Determination List June 2010

Note: '-' A target concentration is not available.

^{\$}Please note that total ammonia (NH_4^+ and NH_3) is equivalent to ammoniacal nitrogen in laboratory reports

"Bioavailable" in relation to copper, zinc and manganese is the generic EQS_{bioavailable}⁷ derived from the Metal Bioavailability Assessment Tool (M-BAT) developed by the Water Framework Directive UK Technical Advisory Group (WFDTAG). Exceedance of this value should prompt a site-specific assessment using the M-BAT with pH, DOC and Ca to derive a site-specific EQS termed the PNEC_{dissolved}. <u>http://www.wfduk.org/resources/rivers-lakes-metal-bioavailability-assessment-tool-m-bat</u>

Notes


- 1. Environment Agency (2013), 'Groundwater Protection: Principles and Policy (GP3) v1.1'.
- 2. The Water Supply (Water Quality) Regulations 2000 (SI 2000/3184), as amended by SI 2001/2885, SI 2002/2469, SI 2005/2035, SI 2007/2734 and SI 2010/991.
- 3. The Private Water Supplies Regulations 1991. SI 1991 / 2790.
- 4. The Surface Waters (Abstraction for Drinking Water) (Classification) Regulations 1996 (as amended). SI 1996 / 3001.
- 5. The River Basin Districts Typology, Standards and Groundwater Threshold Values (Water Framework Directive) (England and Wales) Directions 2010.
- 5a. Annual mean concentration (mg/l) for 'Good' standard
- 5b. Applies to hardness ranges of <40mg/l CaCO₃, 40–<50mg/l CaCO₃, 50–<100mg/l CaCO₃, 100–<200mg/l CaCO₃ and >/=200mg/l CaCO₃. The target concentrations included in Table 1 are listed in order of increasing calcium carbonate concentrations.
- 5c. Annual average EQS (surface waters)
- 5d. Sum of aldrin, dieldrin, endrin and isodrin
- 5e. Applies to hardness ranges of 0–50mg/l CaCO₃, 50–100mg/l CaCO₃, 100–250mg/l CaCO₃ and >250mg/l CaCO₃. The target concentrations included in Table 1 are listed in order of increasing calcium carbonate concentrations; applies to annual mean concentration (mg/l) of CaCO₃. Applies to annual mean concentration of metal (mg/l) for 'Good' standard.
- 5f. Sum of benzo(b)fluoranthene and benzo(k)fluoranthene
- 5g. Sum of benzo(g,h,i)perylene and indeno(1,2,3-cd)pyrene
- 6. Minimum reporting values listed in Annex (J) of Horizontal Guidance Note H1 (H1 Environmental Risk Assessment Framework, Environment Agency, April 2010 v2.0). Note target concentration for xylenes is 0.003mg/l each for o-xylene and m/p xylene.
- 7. DEFRA (2014). Water Framework Directive implementation in England and Wales: new and updated standards to protect the water environment. Table 5.2a: Proposed standards for 29 specific pollutants long-term mean value. Additional information on the Metal Bioavailability Assessment Tool (M-BAT) is available at http://www.wfduk.org/resources/rivers-lakes-metal-bioavailability-assessment-tool-m-bat.
- 8. The Water Supply (Water Quality) Regulations 2000. (SI 2000 / 3184) sum of chloroform, bromoform, dibromochloromethane and bromodichloromethane.
- 9. WRc plc (2002), R&D Technical Report P45. Where predicted no-effect concentration is below the laboratory method detection limit (LMDL) for chrysene, dibenzo(a,h)anthracene and fluoranthene, the target concentration has been set at the LMDL of 0.00001mg/l.
- 10. Please note this is a very conservative value. If necessary please refer to EA (2009). *Petroleum hydrocarbons in Groundwater Supplementary Guidance for Hydrogeological Risk Assessment, which* provides advice on risk rankings of TPH CWG fractions. It may be possible to eliminate low risk fractions and/or those not detected above LMDL from concern.
- 11. Environment Agency (2009), 'Petroleum hydrocarbons in groundwater: supplementary guidance for hydrogeological risk assessment'.
- 12. WHO (2004), *Guidelines for drinking-water quality*, 3rd edn.

- 13. Drinking Water Inspectorate (London, UK). Environmental Information Request on MTBE in drinking water. Ref. DWI 1/10/18; dated 28 November 2006. Value is based on the odour threshold for MTBE, which is lower than a health-based guideline value.
- Council Directive on Pollution Caused by Certain Dangerous Substances Discharged into the Aquatic Environment of the Community (Dangerous Substances Directive) - List II Substances (76/464/EEC).
- 15. The Water Framework Directive (200/60/EC). Freshwater Environmental Quality Standards.
- 16. UK TAG January 2008. Proposals for Environmental Quality standards for Annex VIII Substances. Long term 90%ile for upland low alkalinity water. The value for lowland high alkalinity waters is 0.6mg/l. (UKTAG recommends the adoption of the total ammonia standard from the UK Environmental Standards and Conditions (Phase 1) report dated August 2006. UKTAG believes that this approach will provide an effective level of protection for both total and unionised ammonia in freshwaters).
- 17. Council Directive on the Quality of Fresh Waters Needing Protection or Improvement in Order to Support Fish Life (Freshwater Fish Directive) (78/659/EEC)

FLOW CHART TO ASSIST WITH SELECTION OF TARGET CONCENTRATIONS

Controlledwaters_GAC_Rev05

APPENDIX M GENERIC ASSESSMENT CRITERIA FOR POTABLE WATER SUPPLY PIPES

A range of pipe materials is available and careful selection, design and installation is required to ensure that water supply pipes are satisfactorily installed and meet the requirements of the Water Supply (Water Fittings) Regulations 1999 in England and Wales, the Byelaws 2000 in Scotland and the Northern Ireland Water Regulations. The regulations include a requirement to use only suitable materials when laying water pipes and laying water pipes without protection is not permitted at contaminated sites. The water supply company has a statutory duty to enforce the regulations.

Contaminants in the ground can pose a risk to human health by permeating potable water supply pipes. To fulfil their statutory obligation, UK water supply companies require robust evidence from developers to demonstrate either that the ground in which new plastic supply pipes will be laid is free from specific contaminants, or that the proposed remedial strategy will mitigate any existing risk. If these requirements cannot be demonstrated to the satisfaction of the relevant water company, it becomes necessary to specify an alternative pipe material on the whole development or in specific zones.

In 2010, UK Water Industry Research (UKWIR) published *Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites* (Report Ref. No. 10/WM/03/21). This report reviewed previously published industry guidelines and threshold concentrations adopted by individual water supply companies.

The focus of the UKWIR research project was to develop clear and concise procedures, which provide consistency in the pipe selection decision process. It was intended to provide guidance that can be used to ensure compliance with current regulations and to prevent water supply pipe failing prematurely due to the presence of contamination.

The report concluded that in most circumstances only organic contaminants pose a potential risk to plastic pipe materials and Table 3.1 of the report provides threshold concentrations for polyethylene (PE) and polyvinyl chloride (PVC) pipes for the organic contaminants of concern. The report also makes recommendations for the procedures to be adopted in the design of site investigations and sampling strategies, and the assessment of data, to ensure that the ground through which water supply pipes will be laid is adequately characterised.

Risks to water supply pipes have therefore been assessed against the threshold concentrations for PE and PVC pipe specified in Table 3.1 of Report 10/WM/03/21, which have been adopted as the GAC for this linkage and are reproduced in Table A3 below.

Since water supply pipes are typically laid at a minimum depth of 0.75m below finished ground levels, sample results from depths between 0.5m and 1.5m below finished level are generally considered suitable for assessing risks to water supply. Samples outside these depths can be used, providing the stratum is the same as that in which water supply pipes are likely to be located. The report specifies that sampling should characterise the ground conditions to a minimum of 0.5m below the proposed depth of the pipe.

It should be noted that the assessment provided in this report is a guide and the method of assessment and recommendations should be checked with the relevant water supply company.

		Pipe materia	ıl
		GAC (mg/kg)
	Parameter group	PE	PVC
1	Extended VOC suite by purge and trap or head space and GC-MS with TIC (Not including compounds within group 1a)	0.5	0.125
1a	BTEX + MTBE	0.1	0.03
2	SVOCs TIC by purge and trap or head space and GC-MS with TIC (aliphatic and aromatic C_5 - C_{10}) (Not including compounds within group 2e and 2f)	2	1.4
2e	Phenols	2	0.4
2f	Cresols and chlorinated phenols	2	0.04
3	Mineral oil C ₁₁ –C ₂₀	10	Suitable
4	Mineral oil C ₂₁ -C ₄₀	500	Suitable
5	Corrosive (conductivity, redox and pH)	Suitable	Suitable
Spec	ific suite identified as relevant following site investigation		
2a	Ethers	0.5	1
2b	Nitrobenzene	0.5	0.4
2c	Ketones	0.5	0.02
2d	Aldehydes	0.5	0.02
6	Amines	Not suitable	Suitable

APPENDIX N COMPARISON OF SOIL ANALYSIS TO HUMAN HEALTH CRITERIA

313583- Roade Bypass- Human Health Risk Assessment Soil Results Summary Table and Direct ^{1 of 3} Comparison

Sample Identity		Industrial/Commercial Screening Value (1% SOM)	TP01	TP02	TP03	TP04	TP05	TP12	TP14
Depth Strata		GACs	0.20	0.20	0.30	0.50	0.20	0.20	0.20
Determinants Visual Fibre Screen	Units		NAD						
PH	pH		7.66	7.15	8.1	8.2	6.86	7.9	7.67
Total Organic Carbon Metals	% w/w		3.73	1.61	2.64	1.69	2.69	0.99	1.33
Arsenic	mg/kg	640	4	10	2	<1	4	11	7
Cadmium Copper	mg/kg mg/kg	410 68000	0.9	1.1 16	24	1 15	0.7	1.1 15	14
Chromium Chromium (hexavalent)	mg/kg	8600 49	36	26	39	37	34	26	26
Lead	mg/kg mg/kg	2300	<1 30	<1 24	<1 20	<1 16	<1 21	<1 96	<1 21
Mercury Nickel	mg/kg mg/kg	1120 980	<0.17 26	<0.17 24	0.3	<0.17 30	<0.17 21	<0.17 27	<0.17 26
Selenium	mg/kg	12000	1	1	1	<1	<1	<1	<1
Zinc Total Petroleum Hydrocarbons Criteria Working G	mg/kg Froup (TPHCW	740000	82	68	69	53	63	73	71
Ali >C5-C6	mg/kg	3200	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Ali >C6-C8 Ali >C8-C10	mg/kg mg/kg	7800 2000	<0.01 <0.01						
Ali >C10-C12	mg/kg	9700	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ali >C12-C16 Ali >C16-C21	mg/kg mg/kg	59000	<0.1 <0.1						
Ali >C21-C35	mg/kg	Assess as sum below	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ali >C16-C35 Total Aliphatics	mg/kg mg/kg	1000000	<0.1 <0.1						
Aro >C5-C7	mg/kg	27 56000	<0.01 <0.01						
Aro >C7-C8 Aro >C8-C9	mg/kg mg/kg	14000	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Aro >C9-C10 Aro >C10-C12	mg/kg mg/kg	3500 16000	<0.01 <0.1						
Aro >C12-C16	mg/kg	36000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aro >C16-C21 Aro >C21-C35	mg/kg mg/kg	28000 28000	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1
Total Aromatics	mg/kg	20000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TPH (Ali & Aro) BTEX - Benzene	mg/kg mg/kg	27	<0.1 <0.01						
BTEX - Toluene	mg/kg	56000	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
BTEX - Ethyl Benzene BTEX - m & p Xylene	mg/kg mg/kg	6000 5900	<0.01 <0.01						
BTEX - o Xylene	mg/kg	6600	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
MTBE PAHs (Polycyclic Aromatic Hydrocarbons)	mg/kg	67000	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenapthene	mg/kg mg/kg	110000 110000	<0.01 <0.01						
Acenapthylene Anthracene	mg/kg	520000	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo(a)anthracene Benzo(a)pyrene	mg/kg mg/kg	170 77	<0.04 0.06	<0.04 <0.04	<0.04 <0.04	<0.04 <0.04	<0.04 <0.04	<0.04 <0.04	<0.04 <0.04
Benzo(b)fluoranthene	mg/kg	44	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene Benzo(k)fluoranthene	mg/kg mg/kg	3900 1200	<0.05	<0.05 <0.07	<0.05 <0.07	<0.05 <0.07	<0.05 <0.07	<0.05 <0.07	<0.05 <0.07
Chrysene	mg/kg	350	<0.06	< 0.06	< 0.06	< 0.06	<0.06	<0.06	< 0.06
Dibenzo(ah)anthracene Fluoranthene	mg/kg mg/kg	3.5 23000	<0.04 <0.08						
Fluorene	mg/kg	63000	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(123-cd)pyrene Napthalene	mg/kg mg/kg	500 1800	0.04 <0.03	<0.03 <0.03	<0.03 <0.03	<0.03 <0.03	<0.03 <0.03	<0.03 <0.03	<0.03
Phenanthrene	mg/kg mg/kg	22000 54000	<0.03 <0.07						
Pyrene Total PAH	mg/kg		0.1	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Organo Chlorine Pesticides (OCP) and Organo Pl Mevinphos	hosphorous Pe µg/kg	sticides (OPP)		<50	1	1	1	<50	
Dichlorvos	µg/kg	140000		<50				<50	
alpha-Hexachlorocyclohexane (HCH) Diazinon	μg/kg μg/kg	170000		<50 <50				<50 <50	
gamma-Hexachlorocyclohexane (HCH / Lindane)	µg/kg	67000		<50				<50	
Heptachlor Aldrin	µg/kg µg/kg	170000		<50 <50				<50 <50	
beta-Hexachlorocyclohexane (HCH)	µg/kg	65000		<50				<50	
Methyl Parathion Malathion	μg/kg μg/kg			<50 <50				<50 <50	
Fenitrothion	µg/kg			<50 <50				<50 <50	
Heptachlor Epoxide Parathion (Ethyl Parathion)	µg/kg µg/kg			<50				<50	
p,p-DDE p,p-DDT	μg/kg μg/kg			<50 <50				<50 <50	
p,p-Methoxychlor	µg/kg			<50				<50	
p,p-TDE (DDD) o,p-DDE	μg/kg μg/kg			<50 <50				<50 <50	
o,p-DDT	µg/kg			<50				<50	
o,p-Methoxychlor o,p-TDE (DDD)	μg/kg μg/kg			<50 <50				<50 <50	
Endosulphan I	µg/kg	5600000		<50				<50	
Endosulphan II Endosulphan Sulphate	µg/kg µg/kg	6300000		<50 <50				<50 <50	
Endrin	µg/kg			<50				<50	
Ethion Dieldrin	µg/kg µg/kg	170000		<50 <50				<50 <50	
Azinphos-methyl Nitrogen Pests	µg/kg			<50				<50	
Ametryn	µg/kg			<50				<50	
Atraton Atrazine	μg/kg μg/kg	9300000		<50 <50				<50 <50	
Prometon	µg/kg			<50				<50	
Prometryn Propazine	μg/kg μg/kg			<50 <50				<50 <50	
Simazine	µg/kg			<50				<50	
Simetryn Terbuthylazine	μg/kg μg/kg			<50 <50				<50 <50	
Terbutryn	µg/kg			<50				<50	
= Exceedence of GAC for an indust	rial/commercia	l end-use							
				1	1	1			

313583- Roade Bypass- Human Health Risk Assessment Soil Results Summary Table and Direct ^{2 of 3} Comparison

Sample Identity		Industrial/Commercial Screening Value (1% SOM)	TP15	TP15	TP16	TP16A	TP16A	TP17	WS02	WS04
Depth		GACs	0.20	1.50	0.10	0.20	0.50	0.20	0.20	0.30
Determinants /isual Fibre Screen	Units		NAD							
Н	pH		7.4	8.47	8.17	8.78	8.17	7.91	7.66	8.11
Fotal Organic Carbon Metals	% w/w		2.07	<0.03	1.43	<0.03	0.58	2.19	1.19	1.93
Arsenic Cadmium	mg/kg mg/kg	640 410	8 1.3	<1 <0.5	3 0.8	1 <0.5	3 0.7	3 0.7	7	3 0.8
Copper	mg/kg	68000	15	5	12	2	10	13	13	14
Chromium Chromium (hexavalent)	mg/kg mg/kg	8600 49	35 <1	11 <1	18 <1	4 <1	20 <1	20 <1	33 <1	18 <1
Lead Mercury	mg/kg mg/kg	2300 1120	22 <0.17	4 <0.17	18 <0.17	2 0.31	13 <0.17	16 0.29	19 <0.17	16 0.2
lickel	mg/kg	980	29	11	17	3	17	16	33	16
Selenium Zinc	mg/kg mg/kg	12000 740000	<1 87	<1 16	<1 54	<1 5	<1 45	<1 50	72	<1 52
Total Petroleum Hydrocarbons Criteria Working G Ali >C5-C6	mg/kg	G) 3200	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Ali >C6-C8	mg/kg	7800 2000	<0.01 <0.01							
Ali >C8-C10 Ali >C10-C12	mg/kg mg/kg	9700	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ali >C12-C16 Ali >C16-C21	mg/kg mg/kg	59000	<0.1	<0.1 <0.1						
Ali >C21-C35	mg/kg	Assess as sum below	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ali >C16-C35 Fotal Aliphatics	mg/kg mg/kg	1000000	<0.1 <0.1							
Aro >C5-C7 Aro >C7-C8	mg/kg mg/kg	27 56000	<0.01 <0.01							
\ro >C8-C9	mg/kg	14000 3500	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01	<0.01	<0.01 <0.01
Aro >C9-C10 Aro >C10-C12	mg/kg mg/kg	16000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aro >C12-C16 Aro >C16-C21	mg/kg mg/kg	36000 28000	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 0.3	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
Aro >C21-C35	mg/kg	28000	<0.1	<0.1	<0.1	0.4	<0.1	<0.1	<0.1	<0.1
Fotal Aromatics	mg/kg mg/kg		<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	0.8 0.8	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
BTEX - Benzene BTEX - Toluene	mg/kg mg/kg	27 56000	<0.01 <0.01							
BTEX - Ethyl Benzene	mg/kg	6000	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
BTEX - m & p Xylene BTEX - o Xylene	mg/kg mg/kg	5900 6600	<0.01 <0.01							
MTBE PAHs (Polycyclic Aromatic Hydrocarbons)	mg/kg	67000	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenapthene	mg/kg	110000	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
Acenapthylene Anthracene	mg/kg mg/kg	110000 520000	<0.01 <0.02	<0.01 <0.02	<0.01 <0.02	<0.01 0.02	<0.01 <0.02	<0.01 <0.02	<0.01 <0.02	<0.01 <0.02
Benzo(a)anthracene Benzo(a)pyrene	mg/kg mg/kg	170 77	<0.04 <0.04	<0.04 <0.04	<0.04 <0.04	0.16	<0.04 <0.04	<0.04 <0.04	<0.04 <0.04	<0.04 <0.04
Benzo(b)fluoranthene	mg/kg	44	<0.05	< 0.05	<0.05	0.32	<0.05	<0.05	< 0.05	<0.05
Benzo(ghi)perylene Benzo(k)fluoranthene	mg/kg mg/kg	3900 1200	<0.05 <0.07	<0.05 <0.07	<0.05 <0.07	0.29 0.12	<0.05 <0.07	<0.05 <0.07	<0.05 <0.07	<0.05 <0.07
Chrysene Dibenzo(ah)anthracene	mg/kg mg/kg	350 3.5	<0.06 <0.04	<0.06 <0.04	<0.06 <0.04	0.19 0.05	<0.06 <0.04	<0.06 <0.04	<0.06 <0.04	<0.06 <0.04
luoranthene	mg/kg	23000	<0.08	<0.08	<0.08	0.17	<0.08	<0.08	<0.08	<0.08
Fluorene ndeno(123-cd)pyrene	mg/kg mg/kg	63000 500	<0.01 <0.03	<0.01 <0.03	<0.01 <0.03	<0.01 0.25	<0.01 <0.03	<0.01 <0.03	<0.01 <0.03	<0.01 <0.03
Vapthalene Phenanthrene	mg/kg mg/kg	1800 22000	<0.03 <0.03	<0.03 <0.03	<0.03 <0.03	<0.03 0.04	<0.03 <0.03	<0.03 <0.03	<0.03 <0.03	<0.03 <0.03
Pyrene	mg/kg	54000	<0.07	<0.07	<0.07	0.18	<0.07	<0.07	<0.07	<0.07
Fotal PAH Drgano Chlorine Pesticides (OCP) and Organo Ph	mg/kg osphorous Pe	esticides (OPP)	<0.08	<0.08	<0.08	2.07	<0.08	<0.08	<0.08	<0.08
Nevinphos Dichlorvos	µg/kg µg/kg	140000				<50 <50		<50 <50		
alpha-Hexachlorocyclohexane (HCH)	µg/kg	170000				<50		<50		
Diazinon jamma-Hexachlorocyclohexane (HCH / Lindane)	μg/kg μg/kg	67000				<50 <50		<50 <50		
Heptachlor Aldrin	μg/kg μg/kg	170000				<50 <50		<50 <50		
eta-Hexachlorocyclohexane (HCH)	µg/kg	65000				<50		<50		
Methyl Parathion Malathion	µg/kg µg/kg					<50 <50		<50 <50		
Fenitrothion Heptachlor Epoxide	μg/kg μg/kg					<50 <50		<50 <50		
Parathion (Ethyl Parathion)	µg/kg				-	<50		<50	-	
p,p-DDE p,p-DDT	μg/kg μg/kg				<u> </u>	<50 <50		<50 <50		
p,p-Methoxychlor p,p-TDE (DDD)	μg/kg μg/kg					<50 <50		<50 <50		
p,p-DDE	µg/kg					<50		<50		
p,p-DDT p,p-Methoxychlor	µg/kg µg/kg					<50 <50		<50 <50		
,p-TDE (DDD) Endosulphan I	μg/kg μg/kg	5600000				<50 <50		<50 <50		
Endosulphan II	µg/kg	6300000		ļ		<50		<50		
Endosulphan Sulphate	µg/kg µg/kg					<50 <50		<50 <50		
Ethion Dieldrin	µg/kg µg/kg	170000				<50 <50		<50 <50		
zinphos-methyl	µg/kg	170000		<u> </u>		<50		<50		
litrogen Pests	µg/kg					<50		<50		
Atraton	μg/kg μg/kg	9300000				<50 <50		<50 <50		
Prometon	µg/kg					<50		<50		
Prometryn Propazine	μg/kg μg/kg					<50 <50		<50 <50		
Simazine Simetryn	µg/kg					<50 <50		<50 <50		
Ferbuthylazine	µg/kg µg/kg					<50		<50		
Ferbutryn	µg/kg					<50		<50		
= Exceedence of GAC for an indust	ial/commorai	and-use								

313583- Roade Bypass- Human Health Risk Assessment Soil Results Summary Table and Direct ^{3 of 3} Comparison

Sample Identity		Industrial/Commercial Screening Value (1% SOM)	WS05	WS06	WS06	WS08	WS10
Depth Strata		GACs	0.20	0.10	1.50	0.40	0.40
Determinants	Units						
Visual Fibre Screen pH	pН		NAD 7.55	NAD 7.66	NAD 7.75	NAD 8.02	NAD 7.97
Total Organic Carbon Metals	% w/w		2.56	1.29	2.03	0.65	0.44
Arsenic	mg/kg	640 410	<1 0.8	4 0.8	<1 <0.5	6 1.1	6 0.9
Cadmium Copper	mg/kg mg/kg	68000	20	13	21	13	16
Chromium Chromium (hexavalent)	mg/kg mg/kg	8600 49	25 <1	22 <1	29 <1	22 <1	28 <1
Lead	mg/kg	2300	16	17	16	14	13
Mercury Nickel	mg/kg mg/kg	1120 980	<0.17 21	<0.17 19	<0.17 3	<0.17 23	<0.17 30
Selenium Zinc	mg/kg mg/kg	12000 740000	<1 58	<1 55	<1 9	<1 65	<1 50
Total Petroleum Hydrocarbons Criteria Working G	roup (TPHCW	G)					
Ali >C5-C6 Ali >C6-C8	mg/kg mg/kg	3200 7800	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01
Ali >C8-C10 Ali >C10-C12	mg/kg mg/kg	2000 9700	<0.01 <0.1	<0.01 <0.1	<0.01 <0.1	<0.01 <0.1	<0.01 <0.1
Ali >C12-C16	mg/kg	59000	<0.1	<0.1	<0.1	<0.1	<0.1
Ali >C16-C21 Ali >C21-C35	mg/kg mg/kg	Assess as sum below	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
Ali >C16-C35 Total Aliphatics	mg/kg mg/kg	1000000	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
Aro >C5-C7	mg/kg	27	<0.01	<0.01	<0.01	<0.01	<0.01
Aro >C7-C8 Aro >C8-C9	mg/kg mg/kg	56000 14000	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01
Aro >C9-C10 Aro >C10-C12	mg/kg mg/kg	3500 16000	<0.01 <0.1	<0.01 <0.1	<0.01 <0.1	<0.01 <0.1	<0.01 <0.1
Aro >C12-C16	mg/kg	36000	<0.1	<0.1	<0.1	<0.1	<0.1
Aro >C16-C21 Aro >C21-C35	mg/kg mg/kg	28000 28000	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
Total Aromatics TPH (Ali & Aro)	mg/kg mg/kg		<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
BTEX - Benzene	mg/kg	27	<0.01	<0.01	<0.01	<0.01	<0.01
BTEX - Toluene BTEX - Ethyl Benzene	mg/kg mg/kg	56000 6000	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01
BTEX - m & p Xylene	mg/kg	5900 6600	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01
BTEX - o Xylene MTBE	mg/kg mg/kg	67000	<0.01	<0.01	<0.01	<0.01	<0.01
PAHs (Polycyclic Aromatic Hydrocarbons) Acenapthene	mg/kg	110000	<0.01	<0.01	<0.01	<0.01	<0.01
Acenapthylene	mg/kg	110000 520000	<0.01 <0.02	<0.01 <0.02	<0.01 <0.02	<0.01 <0.02	<0.01 <0.02
Anthracene Benzo(a)anthracene	mg/kg mg/kg	170	<0.04	0.06	<0.04	<0.04	<0.04
Benzo(a)pyrene Benzo(b)fluoranthene	mg/kg mg/kg	77 44	<0.04 <0.05	0.07	<0.04 <0.05	<0.04 <0.05	<0.04 <0.05
Benzo(ghi)perylene	mg/kg	3900 1200	<0.05 <0.07	<0.05 <0.07	0.08	<0.05 <0.07	<0.05 <0.07
Benzo(k)fluoranthene Chrysene	mg/kg mg/kg	350	<0.06	< 0.06	< 0.06	<0.06	< 0.06
Dibenzo(ah)anthracene Fluoranthene	mg/kg mg/kg	3.5 23000	<0.04 <0.08	<0.04 0.09	<0.04 <0.08	<0.04 <0.08	<0.04 <0.08
Fluorene	mg/kg	63000	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(123-cd)pyrene Napthalene	mg/kg mg/kg	500 1800	<0.03 <0.03	0.05 <0.03	0.06	<0.03 <0.03	<0.03 <0.03
Phenanthrene Pyrene	mg/kg mg/kg	22000 54000	<0.03	0.04 <0.07	<0.03 <0.07	<0.03 <0.07	<0.03 <0.07
Total PAH	mg/kg		<0.08	0.41	0.13	<0.08	<0.08
Organo Chlorine Pesticides (OCP) and Organo Ph Mevinphos	osphorous Pe µg/kg			1		[[
Dichlorvos alpha-Hexachlorocyclohexane (HCH)	µg/kg µg/kg	140000 170000					
Diazinon	µg/kg	67000					
gamma-Hexachlorocyclohexane (HCH / Lindane) Heptachlor	μg/kg μg/kg	67000					
Aldrin beta-Hexachlorocyclohexane (HCH)	μg/kg μg/kg	170000 65000					
Methyl Parathion	µg/kg	00000					ļ
Malathion Fenitrothion	µg/kg µg/kg						
Heptachlor Epoxide Parathion (Ethyl Parathion)	μg/kg μg/kg						
p,p-DDE	µg/kg						
p,p-DDT p,p-Methoxychlor	µg/kg µg/kg						
p,p-TDE (DDD) o,p-DDE	μg/kg μg/kg						
o,p-DDT	µg/kg				-		
o,p-Methoxychlor o,p-TDE (DDD)	µg/kg µg/kg						
Endosulphan I Endosulphan II	μg/kg μg/kg	5600000 6300000					
Endosulphan Sulphate	µg/kg	000000					
Endrin Ethion	µg/kg µg/kg						
Dieldrin Azinphos-methyl	μg/kg μg/kg	170000					
Nitrogen Pests				•	i	1	e
Ametryn Atraton	μg/kg μg/kg						
Atrazine Prometon	µg/kg	9300000					
Prometryn	µg/kg µg/kg						
Propazine Simazine	μg/kg μg/kg						
Simetryn	µg/kg						
Terbuthylazine Terbutryn	µg/kg µg/kg						
= Exceedence of GAC for an indust	ial/commercia	al end-use					
				1			

APPENDIX O COMPARISON OF WATER LABORATORY DATA TO CONTROLLED WATERS GAC

Bannye konthy First X Target Contended (C) Bits Bits <th>0 3.25 0 3.25 0 3.25 0 1.25 0 1.840 8 1520 01 <0.01 7 2.4 6 0.15 7 109 2 <0.2 9 564 2 8 01 <0.05 1 <0.15 2 <0.2 9 564 2 8 01 <0.05 1 <1 5</th>	0 3.25 0 3.25 0 3.25 0 1.25 0 1.840 8 1520 01 <0.01 7 2.4 6 0.15 7 109 2 <0.2 9 564 2 8 01 <0.05 1 <0.15 2 <0.2 9 564 2 8 01 <0.05 1 <1 1 <1 1 <1 1 <1 1 <1 1 <1 1 <1 1 <1 1 <1 1 <1 1 <1 1 <1 1 <1 1 <1 1 <1 5																			
Immediate of the set	16 7.16 10 1840 16 0.1840 17 2.4 6 0.15 1 <1 7 109 2 <0.2 9 564 2 <0.2 9 564 1 <0.05 1 <0.02 9 564 2 <0.2 9 564 1 <0.05 1 <0.01 2 <0.2 9 564 1 <0.01 2 <0.2 9 564 1 <0.1 1 <1 1 <1 1 <1 1 <1 1 <1 1 <1 1 <1 1 <1 1 <1 1 <1 5<																			
sens result result <thresult< th=""> <thresult< th=""> <thresult< th=""></thresult<></thresult<></thresult<>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $																			
shrain BarniaPressure Barnia <th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $																			
phphph6.5.9.5phb0.7.86.8.96.8.17.7.97.8.9 <th7.8.9< th="">7.8.97.8.9<th7.8.9< th=""><th7< th=""><th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th></th7<></th7.8.9<></th7.8.9<>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $																			
Shybamp1jjj </td <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																			
SOCng2ng2ng	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																			
Ansner Ippl 10 Impl 100 Impl< 100 Impl< 100 Impl< 100	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																			
Carbon Communication biologoppi62000	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																			
Chonema (dissolved) (i) pg1 50 I I 3 10 c 1 Land (dissolved) pg1 0.05 I -0.01 0.01	8 01 <0.05	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<5	<5	<5	<5	<5	<5	<5
Lad (atsolwa) Maruy (atsolwa) Maruy (atsolwa) Maruy (atsolwa) Maruy (atsolwa) Maruy (atsolwa)µµ110<	$\begin{array}{c c c c c c c c c c c c c c c c c c c $																			
Selenceinple10<	3 139 <																			
Total Protections Charls Working Group (TPHCWG) I	<1																			
BTEX. mail BTEX. mail BTEX	<1																			
BTEX.oxylene up1 up1 <t< td=""><td><1</td> <1</t<>	<1																			
Aix SGC 66 µgh Image 15000 Image	<1																			
Aix Sector 1 up1 up1 300 up1 4 4 4 4 4 4 Aix Sector 2 up1 0 300 0 45 <t< td=""><td><1</td> 5 <5</t<>	<1																			
Als>C1C C3Cµp1 </td <td>5 <5 5 <5 5 <5 1 <1</td>	5 <5 5 <5 5 <5 1 <1																			
Total Alphaticsµg/1ImageImag	5 <5 I <1																			
Ano SCR-09 up1 Image pup Image pup Image pup Image pup Image Imag	<1																			
AD 5-261-0(1) µµµ 0																				
Ano Sc1-G21 µg/l µg/l Image: Point of the second secon	5 <5 5 <5																			
TPH (Ais Aro) (p)1 (m)	5 <5																			
Acenaptivene μg/l m 2200 c0.01 <	5 <5																			
Benzo(a)privene µg/l Image: Constraint of the second seco	01 <0.01																			
Benza(qh)Iper/ene μg/l Sum 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.03																			
Chrysene µg/l Image: Marking Constraints Quick Quick <th< td=""><td>0.02</td></th<>	0.02																			
Fluoranthene $\mu g/l$ $\mu g/l$ $\mu g/l$ $\mu g/l$ 240 $c0.01$	0.03																			
Naphthalene µg/l Image: constraint of the second s	01 <0.01																			
Pyrene $\mu g/l$ $\mu g/l$ $\mu g/l$ $\mu g/l$ 0.1^* 1100 <0.01 <0.01 <0.01 <0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <th< td=""><td>01 <0.01</td></th<>	01 <0.01																			
2,4,5-Trichlorophenol μ g/l μ g/l μ																				
2.4-Dichlorophenol μg/l 4.2																				
2,4-Dinitrotoluene μg/l Image: second																				
2-Chloronaphthalene μg/l Image: constraint of the system constraintof the system constraint of the system<																				
2-Methylnaphthalene μg/l I																				
2-Nitrophenol μg/l																				
4-Chloro-3-methylphenol μg/l 40 <th< th=""> <th< th=""> <</th<></th<>																				
4-Methylphenol μg/l																				
Bis(2-chloroethyl)ether μg/l <th< th=""> <!--</td--><td></td></th<>																				
Bis(2-ethylhexyl)phthalate µg/l 8																				
Carbazole μg/l																				
n-Dibutylphthalate μg/l 8 <																				
Diethyl phthalate µg/l 200 <th< th=""> <th< th=""> <td></td></th<></th<>																				
Hexachlorobenzene μg/l 0.05																				
Phenol SVOC μg/l 7.7																				
Isophorone μg/l	_																			
Phenanthrene SVOC μg/l 5 <2 <2 <1 <1 Perylene μg/l <2 <2 <1 <1 Volatile Organic Compounds (VOCs) - (i.e. Envirolab Data) <2 <2 <1 <1																				
Dichlorodifluoromethane μg/l <th< th=""> <!--</td--><td></td></th<>																				
Vinyl Chloride µg/l 0.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1																				
Trichlorofluoromethane µg/l <th< td=""><td></td></th<>																				
Carbon Disulphide µg/l <td></td>																				
1,1-Dichloroethane μg/l 900 <1 <1 <1 <1 cis-1,2-Dichloroethylene :- {cis-1,2 μg/l 50 <1																				
Chloroform :- {Trichloromethane} µg/l 100 300 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1																				
1,2-Dichloroethane μg/l 3 <																				
Benzene μg/l 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <t< td=""><td></td></t<>																				
Dibromomethane µg/l Image: second se																				
Trichloroethylene :- {Cis-1 μg/l 10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1																				
trans-1,3-Dichloropropylene :- {tra μg/l 40 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1																				
1,3-Dichloropropane μg/l 80 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1<																				
1,2-Dibtomoethane µg/l 0.4 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <td></td>																				
Intracterrationoremane Ipp/l Sum Intracterration Intracterraterration <td></td>																				

Sample Identity			Tier 2 Tarç	get Conce	entration (LTC	2)	BH01	BH02	BH04	BH05	WS02	WS10
Depth							17.17	20.15	9.92	7.00	2.80	3.25
		Enviror	Environmental Quality Standard or Best Equivalent									
Strata		Freshwater EQS	UK/EC DWS	WHO DWS	Dutch Intervention Value	US Regional Screening Levels (RSLs) - Tapwater						
Determinants	Units											
DiMeBenzene 13+14 (m&p Xylene	µg/l	Sum					<1	<1	<1	<1		[
Bromoform :- {Tribromomethane}	µg/l			100			<1	<1	<1	<1		
Styrene :- {Vinylbenzene}	µg/l			20			<1	<1	<1	<1		[
1,1,2,2-Tetrachloroethane	µg/l					150	<1	<1	<1	<1		
1,2-Dimethylbenzene :- {o-Xylene}	µg/l	Sum					<1	<1	<1	<1		
1,2,3-Trichloropropane	µg/l					0.62	<1	<1	<1	<1		
Isopropylbenzene	µg/l						<1	<1	<1	<1		
Bromobenzene	µg/l					88	<1	<1	<1	<1		
2-Chlorotoluene :- {1-Chloro-2-me	µg/l					730	<1	<1	<1	<1		[
n-Propylbenzene :- {1-phenylprop	µg/l					1300	<1	<1	<1	<1		
4-Chlorotoluene :- {1-Chloro-4-me	µg/l						<1	<1	<1	<1		
1,2,4-Trimethylbenzene	µg/l					15	<1	<1	<1	<1		
4-Isopropyltoluene :- {4-methyl-Iso	µg/l						<1	<1	<1	<1		
1,3,5-Trimethylbenzene :- {Mesityl	µg/l					370	<1	<1	<1	<1		
1,2-Dichlorobenzene	µg/l			1000			<1	1	^ 1	<1		
1,4-Dichlorobenzene	µg/l			300			<1	<1	<1	<1		
sec-Butylbenzene :- {1-Methylprop	µg/l						<1	<1	<1	<1		I
tert-Butylbenzene :- {(1,1-Dimethy	µg/l						<2	<2	<2	<2		
1,3-Dichlorobenzene	µg/l						<1	<1	<1	<1		I
n-ButylBenzene :- {1-Phenylbutan	µg/l						<1	<1	<1	<1		
1,2-Dibromo-3-chloropropane	µg/l			1			<2	<2	<2	<2		I
1,2,4-Trichlorobenzene	µg/l			5 to 30			<3	<3	<3	<3		
1,2,3-Trichlorobenzene	µg/l			10			<3	<3	<3	<3		I
Hexachlorobutadiene	μg/l			0.6			<1	<1	<1	<1		1

* Science and indeno(1,2,3-cd)perviewe) Science and indeno(1,2,3-cd)perviewe) ibrarochyleutationativer ibrarochyleutativer ibrarochyleut

APPENDIX P CERTIFICATES OF GEOTECHNICAL ANALYSIS

TESTING VERIFICATION CERTIFICATE

The test results included in this report are certified as:-

ISSUE STATUS: FINAL

In accordance with the Structural Soils Ltd Laboratory Quality Management System, results sheets and summaries of results issued by the laboratory are checked by an approved signatory. The integrity of the test data and results are ensured by control of the computer system employed by the laboratory as part of the Software Verification Program as detailed in the Laboratory Quality Manual.

This testing verification certificate covers all testing compiled on or before the following datetime: **02/11/2017 15:24:39**.

Testing reported after this date is not covered by this Verification Certificate.

Approved Signatory Mark Athorne (Laboratory Manager)

(Head Office) Bristol Laboratory Unit 1A, Princess Street Bedminster Bristol BS3 4AG

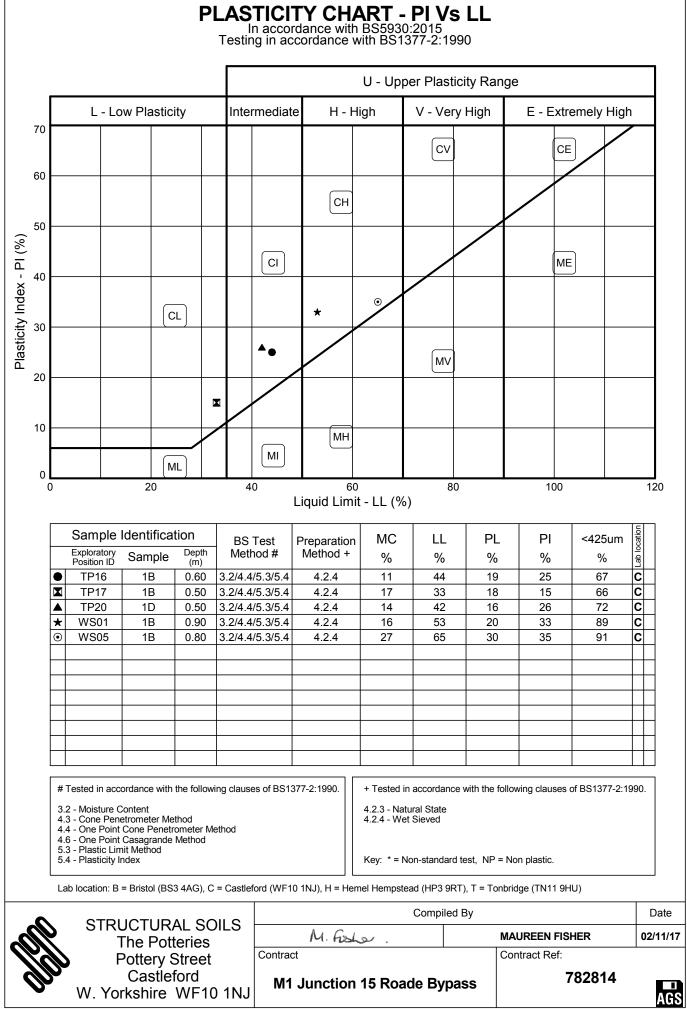
Castleford Laboratory The Potteries, Pottery Street Castleford West Yorkshire WF10 1NJ

Hemel Laboratory 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT Tonbridge Laboratory Anerley Court, Half Moon Lane Hildenborough Tonbridge TN11 9HU

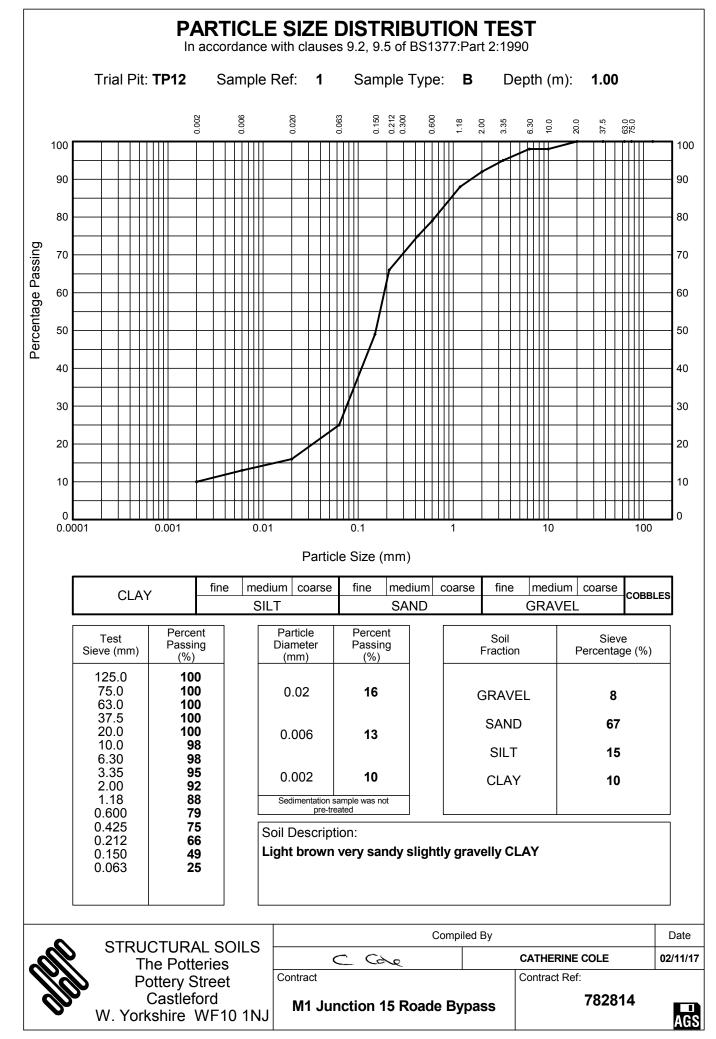
A		Contract:	Job No:
	STRUCTURAL SOILS LTD	M1 Junction 15 Roade Bypass	782814
V			AGS

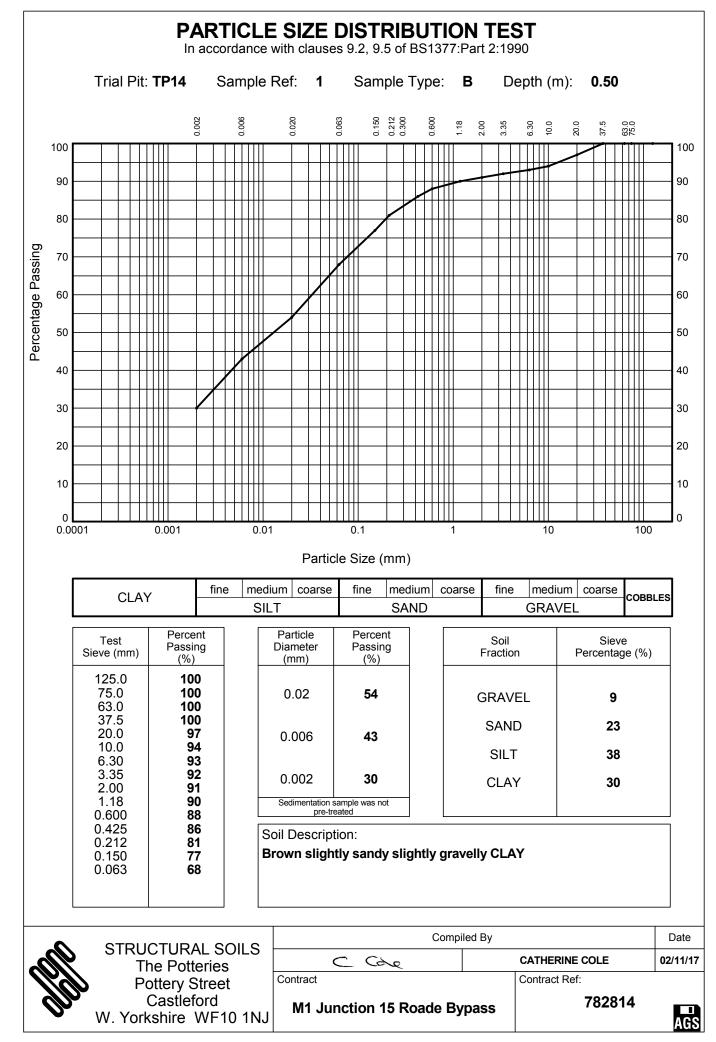
STRUCTURAL SOILS LTD

TEST REPORT

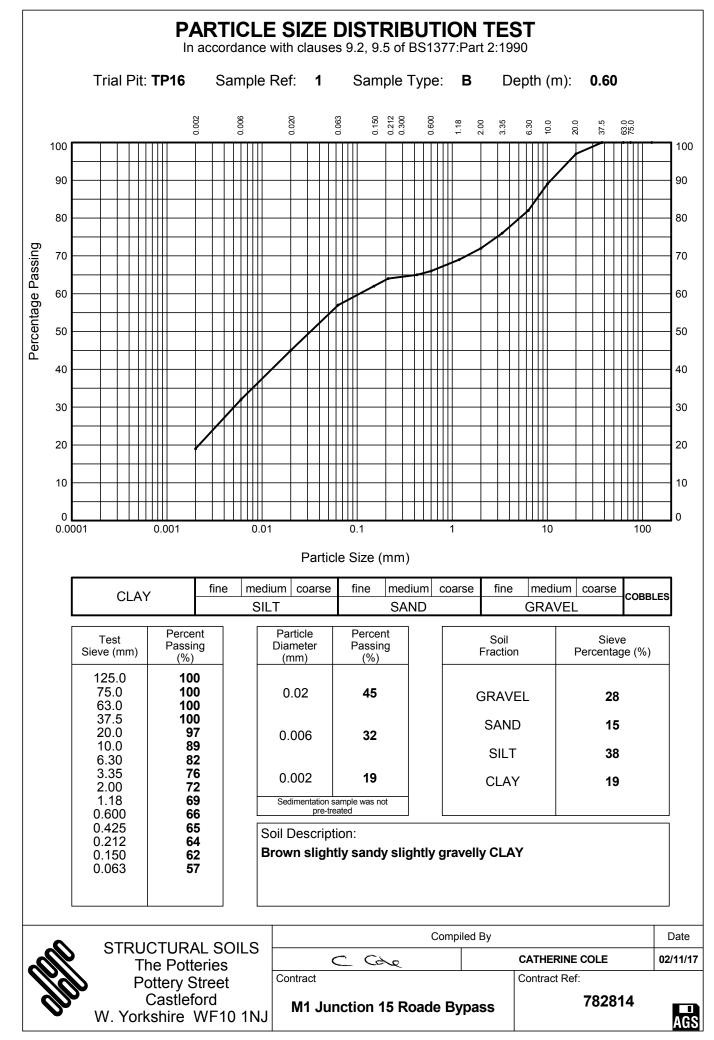

Client RSK Environment Ltd		
Date	02-November-2017 Contract M1 Junction 15 Roade Bypass	
Client Address	Spring Lodge 172 Chester Road Helsby	
For the Atter	ntion of Michael Lawson	
Testing Start	ed 02/10/2017 Client Order No.	
Ukas Accredi	ited Tests Underatken	
Non Ukas Ac	Liquid Limit (one point method) BS1377:Part 2:1990,clause 4.4 Plastic Limit BS1377:Part 2:1990,clause 5.3 Plasticity Index Derivation BS1377:Part 2:1990,clause 5.4 Particle Size Distribution wet sieve method BS1377:Part 2:1990,clause 9.2 Dry density/moisture content relationship 4.5kg rammer method BS1377:Part 4:1990 clause 3.5/3.6	
Tests Undert	aken at our Bristol Laboratory	
	Point Load ISRM 2007 Unconfined Compressive Strength (in house method based on ISRM 2007) Permeability (triaxial cell method) BS1377:Part 6:1990,clause 6 Sulphate content (acid extract) BS1377:Part 3:1990,clause 5.2 Sulphate content (water extract) BS1377:Part 3:1990,clause 5.3	
Please Note: F	Remaining samples will be retained for a period of one month from today and will then be disposed of	:
Opinions and	interpretations expressed in this report are outside the scope of accreditation for this laboratory.	

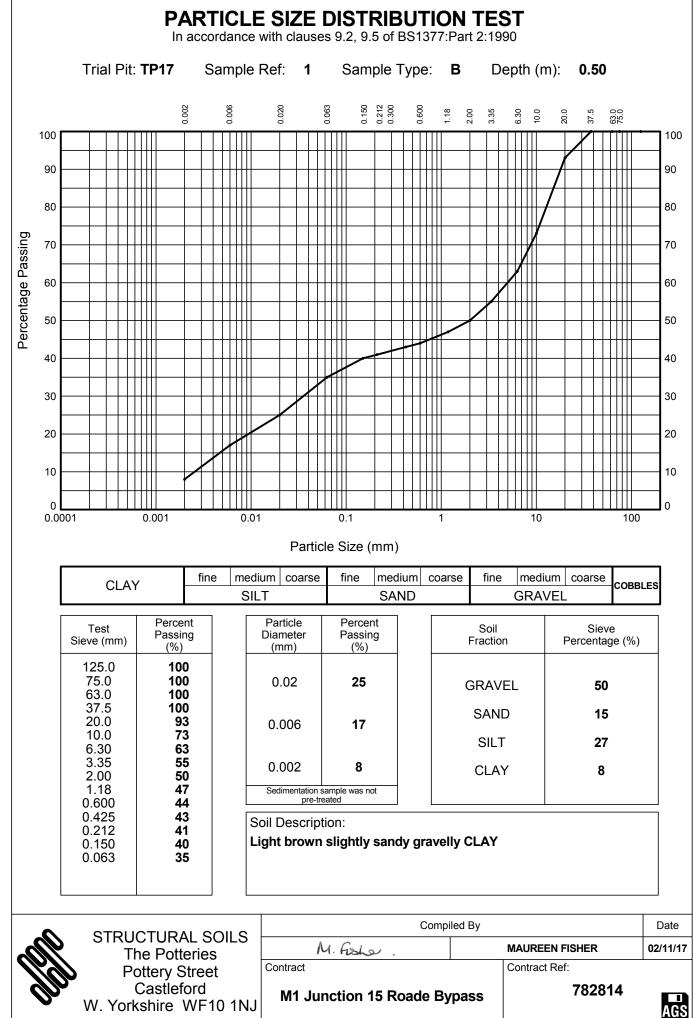
Structural Soils Ltd, The Potteries, Pottery Street, Castleford, WF10 1NJ Tel.01977 552255. E-mail mark.athorne@soils.co.uk

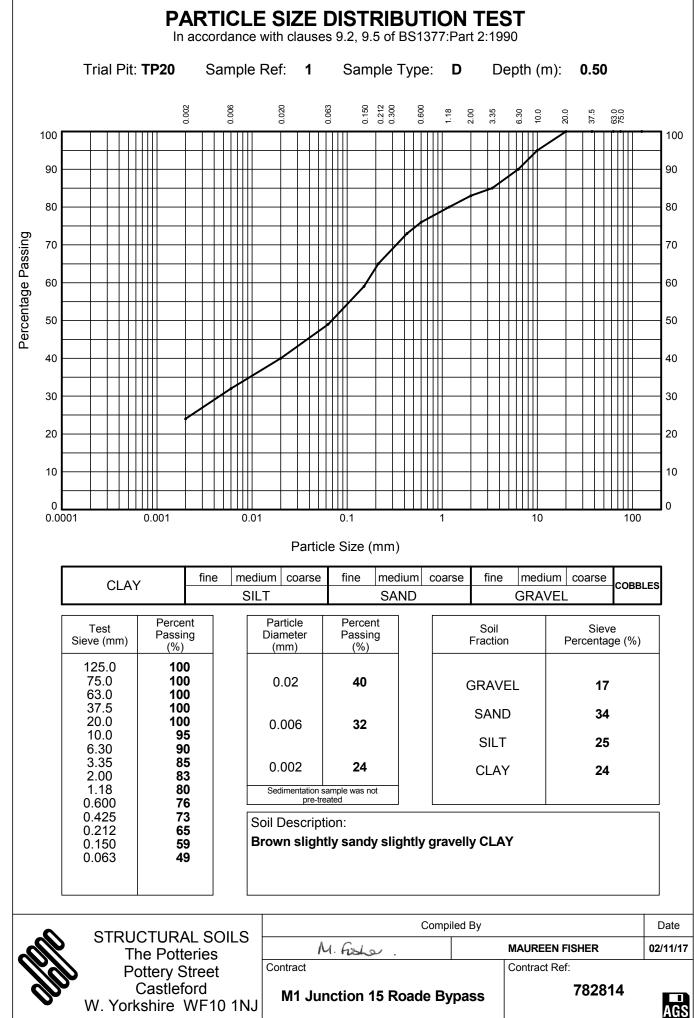

SUMMARY OF SOIL CLASSIFICATION TESTS

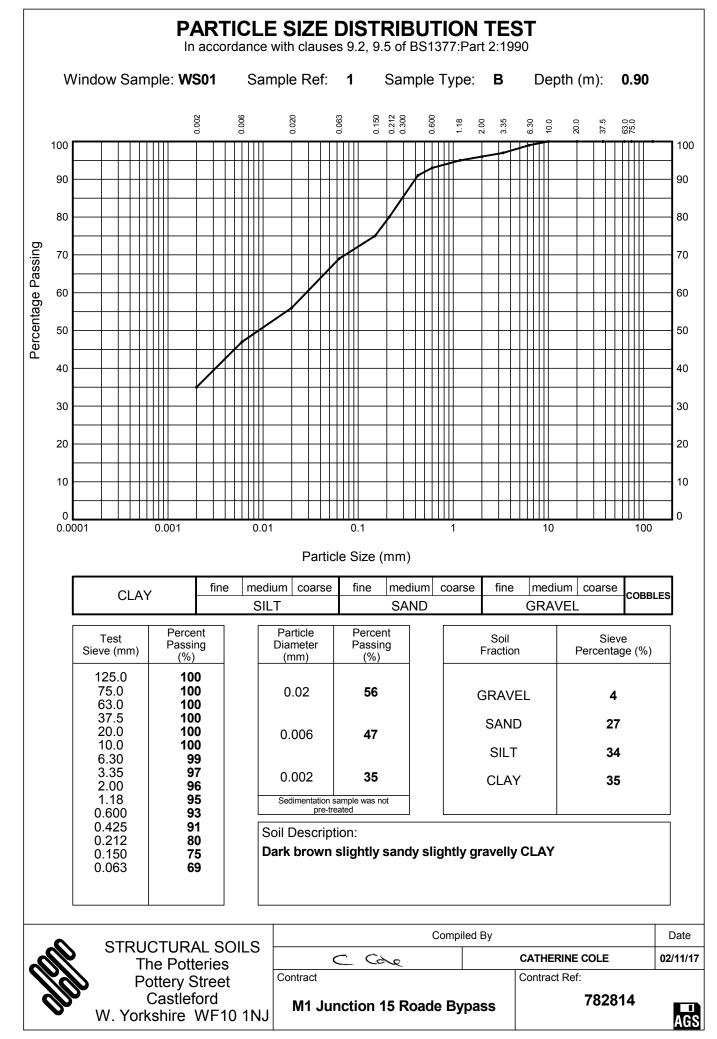

In accordance with clauses 3.2,4.3,4.4,5.3,5.4,7.2,8.2,8.3 of BS1377:Part 2:1990

Exploratory Position ID	Sample Ref	Sample Type	Depth (m)	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity Index	% <425um	Description of Sample					
TP12	1	В	1.00	10					Light brown very sandy slightly gravelly CLAY					
TP14	1	В	0.50	23					Brown slightly sandy slightly gravelly CLAY					
TP16	1	В	0.60	11	44	19	25	67	Brown slightly sandy slightly gravelly CLAY					
TP17	1	В	0.50	17	33	18	15	66	Light brown slightly sandy gravelly CLAY					
TP20	1	D	0.50	14	42	16	26	72	Brown slightly sandy slightly gravelly CLAY					
WS01	1	В	0.90	16	53	20	33	89	Dark brown slightly sandy slightly gravelly CLAY					
WS03	1	В	0.20	16					Light brown sandy slightly gravelly CLAY					
WS05	1	В	0.80	27	65	30	35	91	Grey sandy gravelly CLAY					
		RUCTI		Contra	act:			M1 Ju	Contract Ref: TRCTION 15 Roade Bypass 782814					

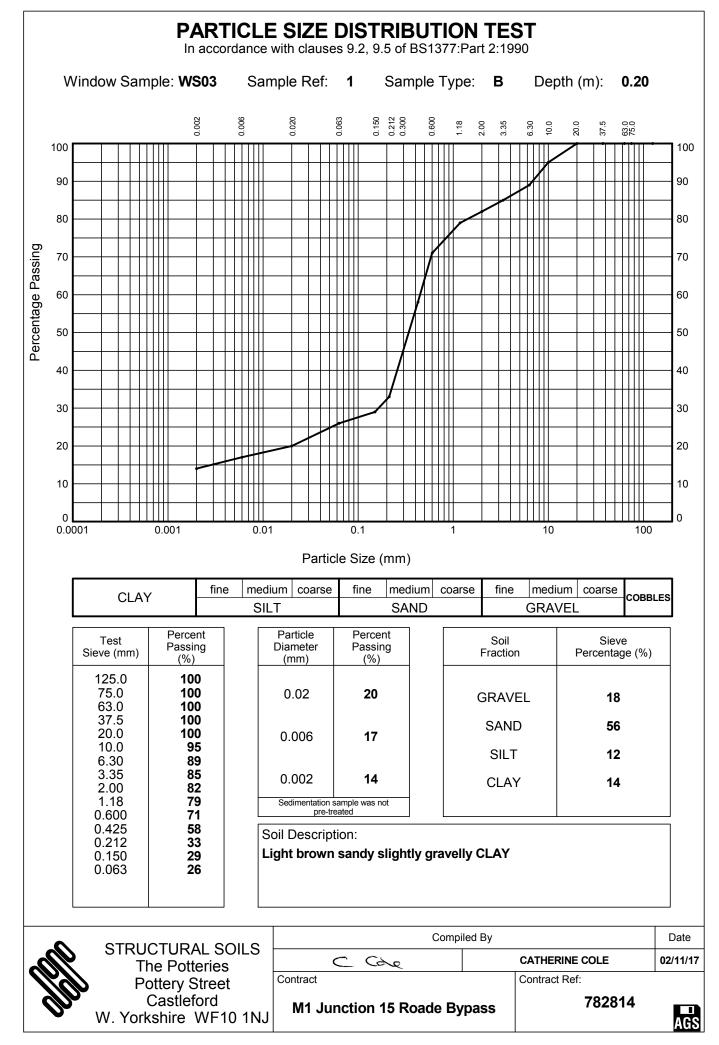


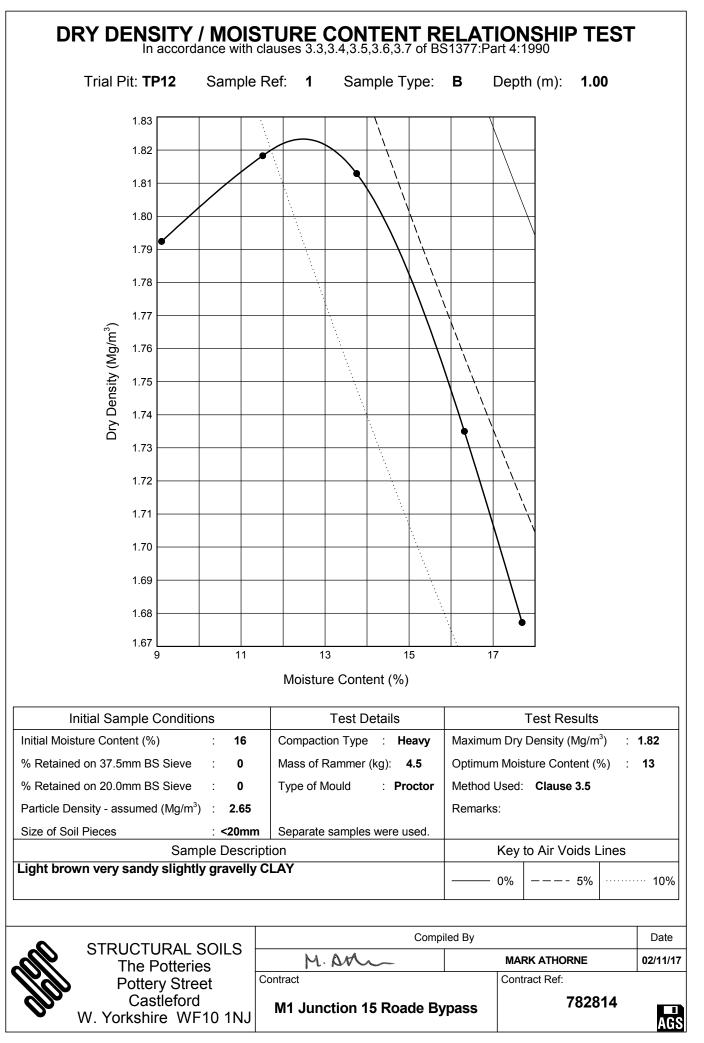

GINT_LIBRARY_V8_06.GLB LibVersion: v8_06_018 PrJVersion: v8_06 - Core+Geotech Lab-Castleford - 008 | Graph L - ALINE STANDARD - A4P | 782814 - M1 JUNCTION 15 ROADE BYPASS.GPJ - v8_06. Structural Solis Ltd, Branch Office - Castleford: The Potteries, Pottery Street, Castleford, West Yorkshire, WF10 1NJ. Tel: 01977-552295, Fax: 01977-552299, Web: www.solis.co.uk, Email: ask@solis.co.uk, [02/11/17 - 14:39 | MF1 |





GINT_LIBRARY_V8_06.GLB LibVersion: v8_06_018 PrjVersion: v8_06 - Core+Geotech Lab-Castleford - 008 | Graph L - PSD - A4P | 782814 - M1 JUNCTION 15 ROADE BYPASS.GPJ - v8_06. Structural Soils Ltd, Branch Office - Castleford: The Potteries, Pottery Street, Castleford, West Yorkshire, WF10 1NJ. Tel: 01977-552255, Fax: 01977-552299, Web: www.soils.co.uk, Email: ask@soils.co.uk, | 02/11/17 - 14:39 | MF1 |





GINT_LIBRARY_V8_06.GLB LibVersion: v8_06_018 PrjVersion: v8_06 - Core+Geotech Lab-Castleford - 008 | Graph L - PSD - A4P | 782814 - M1 JUNCTION 15 ROADE BYPASS.GPJ - v8_06. Structural Soils Ltd, Branch Office - Castleford: The Potteries, Pottery Street, Castleford, West Yorkshire, WF10 1NJ. Tel: 01977-552255, Fax: 01977-552299, Web: www.soils.co.uk, Email: ask@soils.co.uk, | 02/11/17 - 14:39 | MF1 |

GINT_LIBRARY_V8_06.GLB LibVersion: v8_06_018 PrjVersion: v8_06 - Core+Geotech Lab-Castleford - 008 | Graph L - PSD - A4P | 782814 - M1 JUNCTION 15 ROADE BYPASS.GPJ - v8_06. Structural Soils Ltd, Branch Office - Castleford: The Potteries, Pottery Street, Castleford, West Yorkshire, WF10 1NJ. Tel: 01977-552255, Fax: 01977-552299, Web: www.soils.co.uk, Email: ask@soils.co.uk, | 02/11/17 - 14:39 | MF1 |

GINT_LIBRARY_V8_06.GLB LibVersion: v8_06_018 PrjVersion: v8_06 - Core+Geotech Lab-Castleford - 008 | Graph L - COMPACTIONS - A4P | 782814 - M1 JUNCTION 15 ROADE BYPASS.GPJ - v8_06. Structural Soils Ltd, Branch Office - Castleford: The Potteries, Pottery Street, Castleford, West Yorkshire, WF10 1NJ. Tel: 01977-552255, Fax: 01977-552299, Web: www.soils.co.uk, Email: ask@soils.co.uk, | 02/11/17 - 14:40 | MF1 |

SUMMARY OF WATER CONTENT TESTS RT08 Water Content of Rock (in accordance with ISRM 2007)

Exploratory Position ID	Sample Ref	Depth (m)	Sample Type	Water Content (%)	Lab	
BH02	2	11.15	С	4.7	в	

Æ

STRUCTURAL SOILS
1a Princess Street
Bedminster
Bristol
BS3 4AG

Contract:	
Roade Bypass 313583	

Compiled By

EMY HOWARD

Date

01/11/17

DETERMINATION OF POINT LOAD STRENGTH

RT03 Point Load Testing (in accordance with ISRM 2007)

Explorator Position ID	y Depth D (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Content (%)	Rock Type	I ab location
BH01	9.00	D	50	90	0.260	90	0.03	1.30	0.04 (🗸)	27	MUDSTONE	B
BH01	9.00	A	90	55	0.200	79	0.03	1.23	0.04 (🗸)	27	MUDSTONE	B
												_
			Results						Kov			
0) Mean Dia 0) Strength	al tests = 0.04 MN/m ² ametral tests = 0.04 MN/m Anisotropy Index = 1.07 (ection Factor (F) calculate	n² calculated	from highest and			[NS] denotes N Point Load Ir	lon-standard Te <u>idex column:</u> (✔ B = Bristol (BS3	st.) = included in	mean calculation	is. (y) = exclud	= Parallel, P = Perpendi led from mean calculatior I Hempstead (HP3 9RT),	ns
\ 5	STRUCTURAL SO	OILS			Compiled By	/			Date	Contrac	ct Ref:	
1	1a Princess Stre	eet		OU.		EMY	HOWARD		01.11.17	,		
JUN	Bedminster Contract: Bristol BS3 4AG										782814	

GINT_LIBRARY_V8_06.GLB : L - SUMMARY OF POINT LOAD TESTS - A4L : 782814 - M1 JUNCTION 15 ROADE BYPASS.GPJ : 01/11/17 10:27 : AF3 :

RT03 Point Load Testing (in accordance with ISRM 2007)

Explorate Position	ory Depth ID (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Content (%)	Rock Type	Lab location
BH01	11.83	D	80	87	2.095	87	0.28	1.28	0.36 (🗸)	9.5	LIMESTONE	В
BH01	11.83	A	87	88	1.345	99	0.14	1.36	0.19 (✔)	9.5	LIMESTONE	В
			Results						Key			
50) Mean D 50) Strengt	Axial tests = 0.19 MN/m ² Diametral tests = 0.36 MN/m th Anisotropy Index = 1.9 (c prrection Factor (F) calculate	alculated	-			[NS] denotes N Point Load Ir	lon-standard Te <u>idex column:</u> (✔ B = Bristol (BS3	st.) = included in	mean calculation	is. (y) = exclud	. = Parallel, P = Perpendi led from mean calculatior l Hempstead (HP3 9RT),	ns
<u>م</u>	STRUCTURAL S	OILS			Compiled By	/			Date	Contrac	ct Ref:	
<i>"</i>	1a Princess Stre Bedminster	eet		Ctr.	EMY HOWARD 01.11.17							
JUN .					Roade Bypass 313583				782814			

RT03 Point Load Testing (in accordance with ISRM 2007)

Explorato Position I	ry Depth D (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Content (%)	Rock Type	I ab location
BH01	14.80	D	105	88	5.130	88	0.66	1.29	0.85 (✔)	4.7	LIMESTONE	B
BH01	14.80	А	88	50	10.710	75	1.91	1.20	2.29 (✔)	4.7	LIMESTONE	B
50) Mean Di 50) Strength	kial tests = 2.29 MN/m ² ametral tests = 0.85 MN/m Anisotropy Index = 2.68 (rection Factor (F) calculate	n ² calculated	-			[NS] denotes N Point Load In	lon-standard Te i <u>dex column:</u> (✔ B = Bristol (BS3	st.) = included in	mean calculation	is. (y) = exclud	= Parallel, P = Perpendi led from mean calculation l Hempstead (HP3 9RT),	ns
^	STRUCTURAL SO	DILS			Compiled By	/			Date	Contrac	ct Ref:	
<u> </u>	1a Princess Street Bedminster					EMY HOWARD 01.11.17					700044	
lln	Bedminster Bristol BS3 4AG		Contract:		Roade	Bypass 313	3583				782814	

RT03 Point Load Testing (in accordance with ISRM 2007)

Explorator Position II	ry Depth D (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Content (%)	Rock Type	I ab location
BH01	16.70	D	65	88	1.315	88	0.17	1.29	0.22 (✔)	7.3	LIMESTONE	B
BH01	16.70	A	88	68	0.980	87	0.13	1.28	0.17 (✔)	7.3	LIMESTONE	B
0) Mean Dia 0) Strength	kial tests = 0.17 MN/m ² ametral tests = 0.22 MN/m Anisotropy Index = 1.33 (rection Factor (F) calculate	n² calculated	•			[NS] denotes N Point Load In	lon-standard Te <u>idex column:</u> (✔ B = Bristol (BS3	st.) = included in	mean calculation	is. (y) = exclud	= Parallel, P = Perpendi led from mean calculatior I Hempstead (HP3 9RT),	ns
	STRUCTURAL SO	OILS			Compiled By	/			Date	Contrac	ct Ref:	
<u> </u>	1a Princess Stre Bedminster	eet	<u> </u>	Ctr.		EMY HOWARD 01.11.17					700044	
Mn					Bypass 313	3583		782814				

RT03 Point Load Testing (in accordance with ISRM 2007)

Exploratory Position ID	y Depth (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Content (%)	Rock Type	l ab location
BH01	23.80	D	95	87	15.510	87	2.05	1.28	2.63 (✔)	1.7	LIMESTONE	E
BH01	23.80	А	87	84	24.815	96	2.67	1.34	3.58 (√)	1.7	LIMESTONE	E
0) Mean Diar 0) Strength A	al tests = 3.58 MN/m ² metral tests = 2.63 MN/m Anisotropy Index = 1.36 (ction Factor (F) calculate	n ² calculated	•			[NS] denotes N Point Load In	lon-standard Te <u>idex column:</u> (✔ B = Bristol (BS3	st.) = included in	mean calculation	is. (y) = exclud	I = Parallel, P = Perpendi led from mean calculatior I Hempstead (HP3 9RT),	ns
n s	TRUCTURAL SO				Compiled By	/			Date	Contrac	ct Ref:	
۳ ۲	1a Princess Stre			av.		EMY HOWARD 01.11.17						
	Bedminster Bristol BS3 4AG				Bypass 313	3583		782814				

RT03 Point Load Testing (in accordance with ISRM 2007)

Exploratory Position ID		Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Content (%)	Rock Type	Lab location
BH02	16.00	D	100	87	22.560	87	2.98	1.28	3.82 (✔)	2.0	LIMESTONE	В
BH02	16.00	А	87	105	25.935	108	2.23	1.41	3.15 (✔)	2.0	LIMESTONE	В
50) Mean Dian 50) Strength A io)	ll tests = 3.15 MN/m ² netral tests = 3.82 MN/m unisotropy Index = 1.21 (c ction Factor (F) calculate	² calculated	-			Type of Test ^[NS] denotes N Point Load Ir Lab location: Tonbridge (T	lon-standard Te i <u>dex column:</u> (✔ B = Bristol (BS3	xial, D = Diam st.) = included in 3 4AG), C = Ca	<u>Key</u> etral, I = Irregula mean calculatior astleford (WF10 1	r, B = Block, L ls, (χ) = exclud NJ), H = Heme	= Parallel, P = Perpendi led from mean calculatior l Hempstead (HP3 9RT),	icular, ns T =
S.	TRUCTURAL SC	DILS			Compiled By	ý			Date	Contrac	ot Ref:	
	1a Princess Stre Bedminster	et	<u> </u>	Co-		EMY	,	700044				
Mn					Roade Bypass 313583				782814			

RT03 Point Load Testing (in accordance with ISRM 2007)

Explorator Position IE	y Depth D (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Content (%)	Rock Type	Lab location
BH02	18.30	D	78	87	1.330	87	0.18	1.28	0.23 (✔)	6.6	LIMESTONE	В
BH02	18.30	Α	87	74	1.990	91	0.24	1.31	0.32 (✔)	6.6	LIMESTONE	В
0) Mean Dia 0) Strength /	al tests = 0.32 MN/m ² metral tests = 0.23 MN/m Anisotropy Index = 1.41 (ection Factor (F) calculate	n² calculated	-			[NS] denotes N Point Load In	lon-standard Te <u>idex column:</u> (✔ B = Bristol (BS3	st.) = included in	mean calculation	is. (y) = exclud	= Parallel, P = Perpendi led from mean calculation l Hempstead (HP3 9RT),	ns
	STRUCTURAL SO				Compiled By	1			Date	Contrac	ct Ref:	
%	1a Princess Stre		Cot.		EMY HOWARD 01.11.17							
	Bedminster Bristol BS3 4AG				Bypass 313	3583		782814				

RT03 Point Load Testing (in accordance with ISRM 2007)

Explorator Position I	ry Depth D (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Content (%)	Rock Type	L ab location
BH02	22.17	D	100	87	0.635	87	0.08	1.28	0.11 (✔)	13	LIMESTONE	В
BH02	22.17	A	87	44	0.705	70	0.14	1.16	0.17 (✔)	13	LIMESTONE	В
50) Mean Dia 50) Strength	kial tests = 0.17 MN/m ² ametral tests = 0.11 MN/m a Anisotropy Index = 1.56 (rection Factor (F) calculate	n² calculated	•			[NS] denotes N Point Load In	lon-standard Te i <u>dex column:</u> (✔ B = Bristol (BS3	st.) = included in	mean calculation	is. (y) = exclud	_ = Parallel, P = Perpendi ded from mean calculatior el Hempstead (HP3 9RT),	ns
^	STRUCTURAL SO				Compiled By	1			Date	Contra	ct Ref:	
<u> </u>	1a Princess Stre Bedminster	eet		Ct .		EMY HOWARD 01.11.17						
lln						Bypass 313	3583				782814	

RT03 Point Load Testing (in accordance with ISRM 2007)

Explorato Position	Depth ID (m)	Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Content (%)	Rock Type	I ab location
BH02	25.05	D	85	87	1.470	87	0.19	1.28	0.25 (✔)	10	LIMESTONE	B
BH02	25.05	A	87	64	1.160	84	0.16	1.26	0.21 (✔)	10	LIMESTONE	B
0) Mean Di 0) Strength	xial tests = 0.21 MN/m ² iametral tests = 0.25 MN/m n Anisotropy Index = 1.2 (ca rrection Factor (F) calculate	n ² alculated f	•			[NS] denotes N Point Load Ir	lon-standard Te <u>idex column:</u> (✔ B = Bristol (BS3	st.) = included in	mean calculation	is. (y) = exclud	. = Parallel, P = Perpendi led from mean calculatior l Hempstead (HP3 9RT),	ns
^	STRUCTURAL SO	DILS			Compiled By	/			Date	Contrac	ct Ref:	
X	1a Princess Stre Bedminster	eet		Ctr.		EMY HOWARD 01.11.17						
lln					Roade Bypass 313583				782814			

RT03 Point Load Testing (in accordance with ISRM 2007)

Explorator Position II		Type of Test	Width or Length (W or L) (mm)	Platen Separation (D) (mm)	Failure Load (P) (kN)	Equivalent Diameter (D _e) (mm)	Point Load (I _s) (MN/m ²)	Size Factor (F)	Point Load Index (I _{s(50)}) (MN/m ²)	Water Content (%)	Rock Type	Lab location		
BH02	29.10	D	95	88	1.075	88	0.14	1.29	0.18 (✔)	8.3	MUDSTONE	в		
BH02	29.10	А	88	77	0.585	93	0.07	1.32	0.09 (🗸)	8.3	MUDSTONE	В		
												_		
			Results						Key					
50) Mean Dia	kial tests = 0.09 MN/m ² ametral tests = 0.18 MN/n Anisotropy Index = 2 (ca rection Factor (F) calcula	m ²		west diametral and a ere D _e is equivalent o	uxial I _s (50) ratio) core diameter).	[NS] denotes N Point Load In	lon-standard Te <u>dex column:</u> (✔) B = Bristol (BS3	st.) = included in	etral, I = Irregula mean calculation	s. (y) = exclu	L = Parallel, P = Perpendi ded from mean calculatior el Hempstead (HP3 9RT),	าร		
^	STRUCTURAL S	OILS			Compiled By	/			Date					
	1a Princess Str	reet		CT-		EMY	HOWARD		01.11.17	,	700044			
flen	Bedminster Bristol BS3 4AG		Contract:		Roade	Bypass 313	583			782814				

UNCONFINED COMPRESSIVE STRENGTH

RT05 UCS of Rock-Sample Preparation (In-house method based on ASTM D4543-08 and Eurocode 7 Part 2 W.1.1) RT06 UCS of Rock (In-house method based on ISRM 2007, ASTM D4543-08 and Eurocode 7 Part 2 W.1.1)

Sample Type: C

Borehole: BH01

Sample Ref: 4

Depth (m): 14.80

Bulk Density (Mg/m³): **2.48** Length (mm): **234.73** Test Duration (mins:secs): **3:42** UCS (MPa): **6.0**

Dry Density (Mg/m³): **2.37** Diameter (mm): **86.25** Stress Rate (kN/min): **12 5.0** Failure T Moisture Content (%): **4.7** Length/Diameter Ratio: **2.72** Load at Failure (kN): **35.0**

Failure Type: Axial cleavage

Note: **Axis of loading parallel to core axis** Description: **Grey LIMESTONE** Specimen Preparation: **Specimen was not recored.** Sample tolerance checks: Straightness: **FAIL**. Flatness: **PASS**. Perpendicularity: **PASS**.

Front view (pre-test)

Rear view (pre-test)

Front view (post-test)

Rear view (post-test)

Samples delivered from site to storage facility. Samples are stored in a frost free environment, at temperatures >4°C Compression machine: Impact CT340 2000kN Auto Compression Machine Serial No. CT340-22. SSL No. 011076

•	STRUCTURAL SOILS	Comp	iled By		Date	
Ŋ	1a Princess Street	Cto-		EMY HOWARD	01/11/17	
777	Bedminster	Contract		Job No		
Ille	Bristol BS3 4AG	Roade Bypass 31358	3	782814	AGS	

UNCONFINED COMPRESSIVE STRENGTH

RT05 UCS of Rock-Sample Preparation (In-house method based on ASTM D4543-08 and Eurocode 7 Part 2 W.1.1) RT06 UCS of Rock (In-house method based on ISRM 2007, ASTM D4543-08 and Eurocode 7 Part 2 W.1.1)

Borehole: BH02

Sample Ref: 3

Depth (m): 12.27

Bulk Density (Mg/m³): **2.49** Length (mm): **222.08** Test Duration (mins:secs): **6:58** UCS (MPa): **27.6**

Dry Density (Mg/m³): **2.37** Moistu Diameter (mm): **86.06** Length/E Stress Rate (kN/min): **12** Load at Failure Type: **Axial cleavage**

Sample Type: C

Moisture Content (%): **5.0** Length/Diameter Ratio: **2.58** Load at Failure (kN): **160.6**

Note: **Axis of loading parallel to core axis** Description: **Grey LIMESTONE** Specimen Preparation: **Specimen was not recored.** Sample tolerance checks: Straightness: **FAIL**. Flatness: **PASS**. Perpendicularity: **PASS**.

Front view (pre-test)

Rear view (pre-test)

Front view (post-test)

Rear view (post-test)

Samples delivered from site to storage facility. Samples are stored in a frost free environment, at temperatures >4°C Compression machine: Impact CT340 2000kN Auto Compression Machine Serial No. CT340-22. SSL No. 011076

	1a Princess Street Bedminster Bristol	Contract Poado Bypass 31358	2	EMY HOWARD Job No 782814	01/11/17
0-	BS3 4AG	Roade Bypass 31358	5	702014	AGS

SUMMARY OF CHEMICAL ANALYSES

Exploratory Position ID	Sample Ref	Sample Type	Depth (m)	Acid Soluble Sulphate (% SO ₄)	Aqueous Extract Sulphate (mg/I SO ₄)	рН	Total Sulphur (%)	Description				
BH01	1	С	9.00	0.06	290	9.04	0.70	Dark brownish grey MUDSTONE				
BH01	4	С	14.80	0.41	652	6.63	1.44	Grey LIMESTONE				
BH02	3	С	12.27	0.19	239	7.44	0.13	Grey LIMESTONE				
BH02	7	С	18.30	0.20	158	8.29	0.70	Grey LIMESTONE				
BH03	1	С	14.02	0.42	530	7.85	1.39	Grey MUDSTONE				
BH04	1	С	12.00	0.23	260	8.25	0.54	Grey MUDSTONE				
BH05	1	С	12.30	0.03	119	8.35	0.40	Grey MUDSTONE				
NOTES:-	Chemical	tests were	undertake	 n by Enviro	lab							
	STRUCTURAL SOILS						Co	Date Date	Contra	act Ref:		
	1a Princess Street Bedminster Bristol BS3 4AG				Ċ	<i>v</i>		EMY HOWARD01.11.17Roade Bypass 313583		782	814	A

APPENDIX Q UPDATED GEOTECHNICAL RISK REGISTER

M1 Junction 15 West, Northampton - Roade Bypass Preliminary Sources Study Report

Preliminary Geotechnical Risk Register

It is understood that the site is being considered for a new bypass from the A508 (Northampton Road) north of the town of Roade, around its western extents, and rejoining the A508 (Stratford Road), south of Roade, as shown in Figure 1. At this stage, two possible routes are proposed, as indicated on Figure 2 Site levels along the proposed route of the new bypass are undulating, and a cut and fill exercise is likely to be undertaken in order to reduce the level changes along the proposed route.

Geotechnical Risk Register

The Geotechnical Risk Register has been compiled to show the degree of risk attached to various ground related aspects of the proposed development. The purpose of the register is to provide an assessment of the risk to the project posed by common ground related problems, and to identify suitable mitigation measures for the control of risk to an acceptable level. The risk register should be developed and refined as the geotechnical design and assessment progresses such that the register will allow the management of the geotechnical risks.

The inclusion of a risk in the register does not constitute confirmation that the problem actually exists at the site. A probability of 'very unlikely' is indicative of a condition which the available data suggests should not be present. The calculated risk is not the risk that the impact will occur it is the risk that the mitigation will be required to enable the project to progress. For the purposes of this risk register the magnitude of each impact and the resulting severity of risk is measured against that which would could 'normally' be expected for each element. Before incorporation into a project risk register the impacts and risks for each element should be moderated by an assessment of the cost and time implication of individual mitigation measures.

The Geotechnical Risk Register has been developed in general accordance with the guidance presented in ICE/DETR Document 'Managing Geotechnical Risk' (2001) and the HA documents HD41/03 and HD22/02. The degree of risk (R) is determined by combining an assessment of the probability (P) of the hazard occurring with an assessment of the Impact (I) the hazard and associated mitigation will cause if it occurs (R = P x I). The scale against which the probability and impact are measure and the resulting degree of risk determined is presented below.

Probability	(P)
Very Likely (VLk)	5
Likely (Lk)	4
Plausible (P)	3
Unlikely (U)	2
Very Unlikely (VU)	1

Impact(I)Very High (VH)5High (H)4Medium (M)3Low (Lw)2Very Low (VLw)1

X

(R)	Risk
20 – 25	Severe (Sv)
15 – 19	Substantial (Sb)
10 – 14	Moderate (Md)
5 – 9	Minor (Mn)
1 – 4	None / Negligible (N)

		Hazard	Potential Impact	Befe	ore Co	ntrol	Comments and Proposed Mitigation	RR	
	Conditions			Р	I	R			
Contaminated Land	Previous site use	Contaminated Ground	Health and safety, environmental damage, pollution requiring Remediation	U 2	H 2	N 4	The site appears to be primarily greenfield with the exception of a small areas around various roads, existing railways, and disused railway land, and only negligible amounts of Made Ground are likely in localised areas. Comparison of soil samples to relevant GAC indicate no exceedances are present and therefore it is considered low risk.	Ν	
	Mine Shafts	Shaft Collapse	Surface deformation, structural damage. Health and Safety	VU 1	H 4	N 4	Site is not within mining area as defined on Coal Authority (CA) gazetteer and web site. No evidence of mine shafts observed on site.	N	
		Workings Collapse crown holes, subsidence	Surface deformation, structural damage.	VU 1	Н 4	N 4	Site is not within mining area as defined on Coal Authority (CA) gazetteer and web site. No evidence of shallow mining observed on site.	N	
S		Workings Consolidation, subsidence	Surface deformation	VU 1	M 3	N 3	Site is not within mining area as defined on Coal Authority (CA) gazetteer and web site. No evidence of deep mining observed on site.	N	
Underground Voids	Natural cavities; solution features, Caves and Gulls	Unstable natural ground	Surface deformation, structural damage. Health and Safety	VU	М	N	Geology unlikley to be conducive to the formation of solution features. No evidence of natural cavities or solution features observed on site.	N	
Undergr				1	3	3			
	Other voids; basements, sumps, tanks, wells and adits etc.	Collapse, subsidence	Surface deformation, structural damage. Health and Safety	Ρ	Lw	N	The vast majority of the site is undisturbed farm land. The walkover nor the ground investigation has not indicated any possible voids, man made or otherwise, at the site. Vigilance required during construction works in order to ensure that any voids encountered are appropriately remediated and backfilled.	N	
				2	2	4			

	Condition	Hazard	Impact	Р	I	R	Comment / Mitigation	RR
	Existing steep slopes on site	Slope failure	Site stability; surface deformation at crest, structural damage to services , highways and	Lk	VH	Sv	The existing railway line crossing the north of the site is located in a steep deep cutting, which is, in parts, a protected site (the Roade Cutting), and will require bridging as part of the development. Ground Investigation has confirmed the ground model and strata properties, however no slope stability assessment has been undertaken at this	Md
			adjoining property.	4	5	20	preliminary stage as it is assumed that piled foundation solutions will be utilised to transfer the laods of teh proposed bridge down to the solid deposits well below the cutting, thereby avoiding adding destabilising laods to the cutting.	
	Gradient on site	Earthworks or retaining walls required to accommodate layout	Increased cost of development	VLk 5	H 3	Sb 15	Cut to fill earthworks will be required to develop the site to form suitable highway vertical alignments. Therefore slopes may be created as part of the finished design. Drainage will be important in the design of these slopes. No final earthworks plan has been made available to RSK for full earthworks design, howver it is anticipated that natural deposist would be usable as a cut and fill excercise and would be possible to form suitable safe low embankments and cutting slopes.	Md
s and Earthworks	As-dug cut material unsuitable as fill	Unstable earthworks	Surface deformation, structural damage	P 3	H 4	Md 12	It is anticipated that the majority of materials within the cut areas will be suitable for reuse, however these materials are expected to be sensitive to moisture content change and could be wet of optimum allowable ranges to allow structural reuse. Therefore soils may need modification or stabilisation in structural fill areas and will need careful handling throughout the works. Further investigation of the geotechnical properties of material is required for full earthworks design at detailed design stage.	Md
Slopes	Embankment Stability	Slope failure	Site stability; surface deformation at crest, structural damage to services , highways and adjoining property.	P 3	VH 5	Sb 15	Embankments will need to be carefully designed and will need to accommodate suitable side slope angles, drainage systems and foundations. No earthworks plan has been supplied to RSK and therefore, no assessment to embankment stability can be made. Further investigation of the geotechnical properties of material is required for full earthworks design at detailed design stage.	Md
	Cutting Stability	Slope failure	Site stability; surface deformation at crest, structural damage to services, highways and adjoining property.	P 3	VH 5	Sb 15	Slopes will need to be carefully designed and will need to accommodate suitable drainage systems. No earthworks plan has been supplied to RSK and therefore, no assessment to cutting stability can be made. Further investigation of the geotechnical properties of material is required for full earthworks design at detailed design stage.	Md
	Insufficient suitable fill	Import required to achieve design levels	Increased cost of development	Р	н	Md	A careful cut to fill balance should be achieved to avoid the unnecessary importation of fill materials. No earthworks plan has been supplied to RSK and therefore unable to complete a material balance assessment. Available information suggests that all	Md

M1 Junction 15 West, Northampton - Roade Bypass Preliminary Sources Study Report

				3	4	12	natural materials identified to be present should be suitable for reuse. Further investigation of the geotechnical properties of material is required for full earthworks design at detailed design stage.	
	Condition	Hazard	Impact	Р	I	R	Comment / Mitigation	RR
s	Loose or soft, compressible soils at shallow depth	Ground unsuitable for conventional shallow footings	Excess settlement or alternative foundations	P 3	H 4	Md 12	Ground investigation has revealed that the site is predominately underlain by Glacial Till, which is known to be an overconsolidated clay. These materials are unlikly to be suseptible to significant selttlment although care will need to be taken on the design of the railway overbridge approaches where limited historic fill (derived from natural soils) is thought to have been identified and it is possible that this may need to be removed and re-engineered into place.	Md
ions & Substructures	Adjacent Structures	Works on site affecting stability of adjacent structures	Alternative design or altered development layout.	P 3	H 4	Md 12	No buildings immediately adjacent to the site. However the design of cuttings and embankments will need to be suitably robust and take account of the proximity of the railway cutting, Blisworth Road and the A508 respectively. Further detailed investigation of the area near the Roade railway cutting will be required at detailed design stage, howver initial information suggests piled or deep tradditional foundation options might be feaible with good solid strata present beneath the brdige abutments.	Md
Foundations	Differential Settlement	Settlements / heave beneath proposed road as a result of cut to fill works.	Damage to floors and structures.	P 3	H 4	Md 12	Careful design has to be undertaken to smooth the transition from cut insitu materials to engineered fill materials.	Mn
	Aggressive Ground Chemistry	Attack of buried concrete	Protection required	Lk 4	M 3	Md 12	Available information suggests that gypsum a naturally occurring sulphate could be present within several strata at depth beneath the site and this will require more resistant concrete mix designs to be used to protect in ground concrete from attack. Ground Investigation has indicated elevated levels of sulphate within groundwater. The Blisworth Limestone Formation is a member of the Blue Lias Group which are known to bear pyritic strata. Special concrete mix designs will be required for ingroudn concrete.	Mn

	Condition	Hazard	Impact	Р	I	R	Comment / Mitigation	RR
ents	Soft and compressible near	Ground unsuitable for conventional highway	Alternative highway bridge foundation	VU	м	N	Geology is not anticipated to be particularly susceptible to significant risks of settlement	Mn
Ĕ	surface soil	foundations	designs	1	3		and is not anticipated to be particularly soft, loose or of poor bearing capacity.	
s and Road Pavements	Soft and compressible near surface soil	Low CBR due to soft formation	Surface damage possible exceeding serviceability tolerances requiring increased highway foundation thickness or alternative	U 2	M 3	6	Traditional highway foundation and design construction is anticipated. Design will need to take account of specification for earthworks which may need to include soil stabilisation improvement. Any stabilisation needs to take account of the risk of heave from the presence of naturally occurring high sulphate concentrations in the soils. Ground Investigations have confirmed the ground mdoel and strata classifications. The strata present will all be suitable for reuse in cut and fill earthworks provided they are handled correctly. Further more, detailed earthworks investigations may be necessary	Mn
or slabs			ground improvement or reinforcement.				at detailed design stage to inform earthworks specification.	
Floor	Frost susceptible soils	Frost Heave	Surface damage or alternative design	P 3	M 3	Mn 9	Road pavement construction thickness design should incorporate this risk.	Mn
	High permeability Strata	Ineffective storm water attenuation ponds/water & ecology features	Ponds need lining if required to retain water.	U	М	Mn	Shallow soils across the majority of the site are anticipated to be cohesive and are likely to retain water. Locally, granular soils were only observed within the central part of the propsed route, near eexploratory positions WS03, BH04. Designs need to take account of the prevailing ground conditions at the proposed locations and depths.	Mn
				2	3	6		
Flooding	Low Permeability Strata	Ineffective soakaways	Alternative drainage required	VLk 5	М З		Shallow soils are anticipated to be cohesive and are likely to retain water. Locally, granular soils were only observed within the central part of the propsed route, near eexploratory positions WS03, BH04. Designs need to take account of the prevailing ground conditions at the proposed locations and depths. Soakawy tests failed confirming shallow strata at pond locations are unlikely to be suitable for soakage.	Md
Drainage & F	High groundwater	Effects plateau and cutting levels & foundation designs, in particular cutting	Alternative vertical alignment/plateau levels required affecting cut fill balance feasibility	Р	н		The site is generally underlain by low permeability, unproductive strata (Oadby Member), and pockets of perched water were encountered within shallow soils. A deep groundwater table is present within the Blisworth Limestone Formation/ Rutland Formation but this does not appear to affect the proposed scheme.	N
Dra		depths.	balance leasibility	3	4	12		
	Embankment earthworks and cutting slopes will	Insufficient attenuation soakaways/ponds to accommodate	Flooding	Lk	М		Drainage designs to accommodate expected drainage from earthworks slopes and cutting drains in addition to highways surface water run off.	Mn
	require drainage.	earthworks drainage		4	3	12		
	Local watercourse	Flooding	Flood protection required	Р	Н		flooding relating to streams and groundwater. Specialist flood risk assessment and	Mn
				3	4	12	drainage designs are being undertaken by others to mitigate these potential risks.	

	Condition	Hazard	Impact	Ρ	I	R	Comment / Mitigation	RR
	Loose or unstable strata at shallow depth	Excavation Instability	Collapse or support required. Health and safety	Ρ	н	Md	The majority of strata present across the site are anticipated to be generally stable in the short term during excavation as seen within the trial pit excavation as all remained stable.	Mn
				3	4	12		
Construction Issues	Hard Strata / obstructions at shallow depth	Hard Digging	Increase cost and delay	P 3	M 3	Mn 9	Hard strata in the form of limestone and mudstone bedrock may be present at depth within the solid geology and could be encountered as part of the major earthworks depending upon the proposed vertical alignment. Shallower limestone beds were encountered within trial pits towards the northern part of the proposed route however it is anticipated that the highway alignment will closely follow the exisiting groundlevels for the most part and therefore the risk of encountering hard strata is anticipated to be low.	Mn
Works & Constr	Presence of unrecorded sensitive underground services.	Damage during works posing risk to H&S of personnel and public	Increased cost of delay and for unplanned diversions and protection or repair.	U 2	H 4	Mn 8	Vigilance throughout works. Ensure up to date service drawings are obtained and site is scanned before works commence. Ensure all utilities diverted.	Mn
Temporary W	Shallow Groundwater	Inundation of Excavations	Increase cost and delay. Health and safety	P 3	M 3	Mn 9	Shallow perched groundwater tables may be possible within the shallow Glacial till in granular pockets and any Glaciofluvial Deposits and could be intersected by earthworks cuttings and foundations. Ground Investigation has proven localised perched water within glacial till but these are not thought to be a continuous water table.	Mn
	Contaminated Ground	Precautions for Ground workers	Increase cost and delay. Health and safety	U 2	M 3	Mn 6	Vigilance throughout works. Seek advice of Environmental Engineer if any identified unusual odorous or visually contaminated materials encountered. No contaminated	Mn
	Contaminated	Increased Disposal	Increase cost and delay.	U	M	Mn	land has been encountered during the site investigation. Should potentially	
	Ground	Costs	Health and safety	2	3	6	contaminated ground be enchountered during the groundworks, seek advice from environmental engineer.	

Note: The register only considers geotechnical risk other risks may be present on site, including in-ground risks such as; ecology, archaeology, buried services, UXO etc., which are outside the scope of this assessment.

APPENDIX R UPDATED CONTAMINATED LAND REGISTER

Contaminated Land Risk Assessment

In accordance with Environment Agency publication CLR 11 '*Model Procedures for the Management of Land Contamination*', a preliminary contaminated land risk assessment has been developed for the Site.

The risk assessment has been carried out using the risk model defined and outlined in the following table.

Potential sources have been identified from the desk study information and the guidance provided in EA publication CLR 8 '*Potential Contaminants for the Assessment of Land*'.

Hazard linkages will be determined by the proposed investigation and the risk re-assessed on the basis of the viability of the linkage.

If the hazard linkage is confirmed then remediation or management solutions will be proposed to ensure that no unacceptable risk remains following development.

	Category	Definition
	Severe	Acute risks to human health, catastrophic damage to buildings/property, major pollution of controlled waters
Potential	Medium	Chronic risk to human health, pollution of sensitive controlled waters, significant effects on sensitive ecosystems or species, significant damage to buildings or structures
Severity	Mild	Pollution of non sensitive waters, minor damage to buildings or structures
	Minor	Requirement for protective equipment during site works to mitigate health effects, damage to non sensitive ecosystems or species
	High Likelihood	Pollutant linkage may be present, and risk is almost certain to occur in long term, or there is evidence of harm to the receptor
Probability of	Likely	Pollutant linkage may be present, and it is probable that the risk will occur over the long term
Risk	Low Likelihood	Pollutant linkage may be present, and there is a possibility of the risk occurring, although there is no certainty that it will do so
	Unlikely	Pollutant linkage may be present, but the circumstances under which harm would occur are improbable

		Potential severity									
		Severe	Medium	Mild	Minor						
	High Likelihood	Very High	High	Moderate	Moderate/Low						
robability of	Likely	High	Moderate	Moderate/Low	Low						
isk	Low Likelihood	Moderate	Moderate/Low	Low	Negligible						
	Unlikely	Moderate/Low	Low	Negligible	Negligible						

Contaminated Land Risk Assessment (Conceptual Site Model)

Source	Pathway	Receptor	Initial Asse	ssment from Information	Desk Study	Proposed Investigation /Comments	Hazard	Revised	Proposed Remediation / Management	Residual Risk
(type and location)	,		Severity	Prob.	Risk		Linkage	Risk		
	Inhalation of	Site workers	Medium	Unlikely	Low	Only potential source identified relates to the railway land, including the active line in the centre	Absent	Negligible		Negligible
	vapour	End users	Medium	Unlikely	Low	of the site, and the disused land at its southern extent, There is a potential for isolated areas of	Absent	Negligible		Negligible
Petroleum	Ingestion and									Negligible
hydrocarbon compounds (petrol, diesel & oil) and	absorption via direct contact	End users	Medium	Unlikely	Low	very minor. Watching brief and testing to be undertaken during	Absent	Negligible		Negligible
associated volatile organic compounds within shallow soil / groundwater (associated with	Migration by surface run-off	Surface water drainage	Medium	Unlikely	Low	site strip and enabling works. Ground Investigation was undertaken in areas	Absent	Negligible	Vigilance to be maintained throughout the earthworks and enabling works. Should any suspicious, unexpected strata, materials or Made Ground materials be identified visually or by means of strange odours the advice of	Negligible
	Migration by	Surface water drainage	Medium	Unlikely	Low	not previously investigated to inform detailed design and to confirm these assumptions.	Absent	Negligible	a specialist Geo-environmental Engineer should be sought.	
minor spills and releases within	liquid flow	Aquifer	Medium	Unlikely	Low	No materials thought to be contaminated by visual or olfactory means were identified. A screening	Absent	Negligible	The Geo-Environmental advisor shall provide advice on immediate actions and undertake investigation, testing and liaison with regulators and contractors on how to proceed safely.	Negligible
agricultural fields and on and adjacent to active and former railway land						spread of samples from the shallow and near surface soils were tested to confirm chemical status of the extended area site and no significant contamination was identified.	Absent	Negligible		Negligible
	Plant uptake	Local flora	Mild	Unlikely	Negligible	Groundwater monitoring wells were installed and where feasible groundwater samples were taken and tested to confirm existing groundwater quality in areas not previously investigated and no significant contamination was identified.				
	Inhalation of	Site workers	Medium	Unlikely	Low	Only potential source of heavy metals identified relates to the railway land, including the active line	Absent	Negligible		Negligible
	fugitive dust	End users	Medium	Unlikely	Low	in the centre of the site, and the disused land at its southern extent, no other sources of heavy metals	Absent	Negligible		Negligible
	Ingestion and	Site workers	Medium	Unlikely	Low	identified across the site although past use of soil improvers and/or sewerage sludge's to fertilise the land could have resulted in some metals. Natural	Absent	Negligible		Negligible
Toxic & phytotoxic	absorption via direct contact	End users	Medium	Unlikely	Low	soil concentrations may also be present. Slightly elevated arsenic maybe encountered within	Absent	Negligible		Negligible
heavy metals and semi metals within	Migration by surface run-off	Surface water drainage	Medium	Unlikely	Low	natural soils but is anticipated to be below acceptable commercial end use values.	Absent	Negligible		Negligible
shallow soil / groundwater	Migration in	Surface water drainage	Medium	Unlikely	Low	Watching brief and testing to be undertaken during site strip and enabling works. Ground Investigation was undertaken in areas	Absent	Negligible	Vigilance to be maintained throughout the earthworks and enabling works. Should any suspicious, unexpected strata, materials or Made Ground materials be identified visually or by means of strange odours the advice of	Negligible
associated with natural soils and fertilisers and soil	solution via groundwater	Aquifer	Medium	Unlikely	Low	not previously investigated to inform detailed design and to confirm these assumptions.	Absent	Negligible	a specialist Geo-environmental Engineer should be sought.	Negligible
improvers (possible use of sewerage sludge's)	Plant uptake	Local flora	Mild	Unlikely	Negligible	No Made Ground was identified, or materials thought to be contaminated by visual or olfactory means. A screening spread of samples from the shallow and near surface soils were tested to confirm chemical status of the extended area site and no significant contamination was identified.	Absent	Negligible	The Geo-Environmental advisor shall provide advice on immediate actions and undertake investigation, testing and liaison with regulators and contractors on how to proceed safely.	Negligible
						Groundwater monitoring wells were installed and where feasible groundwater samples were taken and tested to confirm existing groundwater quality in areas not previously investigated and no significant contamination was identified.				
Elv Tippod Motorial	Ingestion and	Site workers	Medium	Unlikely	Low	Site walkover suggests there is no evidence of fly	Absent	Negligible		Negligible
Fly Tipped Material	absorption via direct contact	End users	Medium	Unlikely	Low	tipped material at the site during desk based study and intrusive investigation works.		0.011		5 5 4 4

Roxhill Developments Limited

Preliminary Sources Study Report: M1 Junction 15 West, Northampton - Roade Bypass

Source	Pathway	Receptor	Initial Assessment from Desk Study Information			Proposed Investigation	Hazard	Revised	Proposed Remediation / Mana	
(type and location)	Fattiway	Receptor	Severity	Prob.	Risk		Linkage	Risk		
		Site workers	Medium	Low Likelihood	Moderate to Low	No buildings along the present route that would	Absent	Negligible	Vigilance to be maintained throughout the earthwork Should any suspicious, unexpected strata, materi	
Asbestos within Soil	Inhalation of fugitive dust	End users	Medium	Low Likelihood	Moderate to Low	need removal and no evidence of asbestos past or present. Ground Investigation was undertaken in areas not previously investigated to inform detailed design and to confirm these assumptions. No Made Ground was identified, or materials thought to be contaminated by visual or olfactory means. A screening spread of samples from the shallow and near surface soils were tested to confirm chemical status of the extended area site and no asbestos contamination was identified.	Absent	Negligible	materials be identified visually or by means of strang a specialist Geo-environmental Engineer should Environmental advisor shall provide advice on im undertake investigation, testing and liaison with reg on how to proceed safely	
	Migration in to excavations	Site workers	Severe	Unlikely	Moderate to Low	Site appears to be greenfield with no naturally occurring organic soils likely to be a potential	Absent	Negligible	Construction workers should still ensure that any undertaken below ground level or within excavation	
						source of soil gas. Ground Investigation was undertaken in areas not previously investigated to inform detailed design and to confirm these assumptions.	Absent	Negligible	space works and all normal confined space H&S p including but not limited to atmosphere testing and support.	
Ground Gas from Made Ground and natural strata	Migration in to development, service ducting etc.					No Made Ground was identified, or materials thought to be likely to generate soil gas. No significant contamination was identified.				
		End Users	Severe	Unlikely	to Low	Monitoring of instrumentation installed in boreholes has confirmed there is no significant soil gas present that would be considered a risk to the proposed scheme or end users.				
			It should be noted that cohesive soils present across the site would prevent/ limit potential pathways from any perceived off site sources migrating on to the site.							
Aggressive substances		Buried Structures	Medium	Low Likelihood	Moderate to Low	Available data suggests the potential presence of naturally occurring high sulphates levels might be	Absent	Negligible		
(sulphates, acids, phenols, petroleum) in Shallow soils / groundwater	Direct contact with construction materials	Buried Services	Medium	Low Likelihood	Moderate to Low	InductionOccurring ingrif supprises investigation investigationSecurity indicationThishasbeenconfirmedbygroundinvestigationsample testing.	Absent	Negligible	Design of in ground concrete will take account of th conditions and available test results to ensure a su mix design is utilised in accordance with Bf	
	Inhalation of	Site workers	Medium	Unlikely	Low	Site is a modern arable farm. Modern arable farming should only utilise non persistent	Absent	Negligible		
	vapour	End users	Medium	Unlikely	Low	biodegradable safe pesticides and herbicides for crop production which are licensed and controlled.	Absent	Negligible		
	Ingestion and absorption via	Site workers	Medium	Unlikely	Low	However, the use of environmentally persistent pesticides and herbicides may have historically been used in arable farming and as such the	Absent	Negligible	-	
	direct contact	End users	Medium	Unlikely	Low	presence of widespread soil contamination by older uncontrolled and unlicensed persistent and	Absent	Negligible	Vigilance to be maintained throughout the earthwork Should any suspicious, unexpected strata, materi	
Herbicides and Pesticides within shallow soil	Migration by surface run-off	Surface water drainage	Medium	Unlikely	Low	dangerous herbicides and pesticides is considered possible though is unlikely.	Absent	Negligible	materials be identified visually or by means of strang a specialist Geo-environmental Engineer sho	
(associated with the arable fields)	Migration by	Surface water drainage	Medium	Unlikely	Low	Ground Investigation was undertaken in areas not previously investigated to inform detailed	Absent	Negligible	The Geo-Environmental advisor shall provide advi and undertake investigation, testing and liaisor contractors on how to proceed s	
	liquid flow	Aquifer	Medium	Unlikely	Low	design and to confirm these assumptions.	Absent	Negligible		
	Plant uptake	Local flora	Medium	Unlikely	Low	No Made Ground was identified, or materials thought to be contaminated by visual or olfactory means. A screening spread of samples from the shallow and near surface soils were tested to confirm chemical status of the extended area site and no significant pesticides or herbicide contamination was identified.	Absent	Negligible		

Roxhill Developments Limited

Preliminary Sources Study Report: M1 Junction 15 West, Northampton - Roade Bypass

inagement	Residual Risk
hworks and enabling works. naterials or Made Ground	Negligible
strange odours the advice of ould be sought. The Geo- on immediate actions and h regulators and contractors fely	Negligible
any works that need to be ation are treated as confined	Negligible
1&S protocols are adopted ig and suitable excavation	Negligible
the fifth and the base of a standard strength of the	Negligible
at of the anticipated ground a suitably robust concrete ith BRE SD1:2005.	Negligible
	Negligible
	Negligible
	Negligible
hworks and enabling works. naterials or Made Ground	Negligible
strange odours the advice of er should be sought.	Negligible
advice on immediate actions ison with regulators and	Negligible
ed safely.	Negligible
	Negligible

						Groundwater monitoring wells were installed and where feasible groundwater samples were taken and tested to confirm existing groundwater quality in areas not previously investigated and no significant contamination was identified.				
	Migration in to excavations	Site workers	Severe	Unlikely	Moderate to Low	Currently active and historic refuse facilities and landfill located south-east of the site, beyond the	Absent	Negligible		Negligible
Ground Gas migration from landfill south-east of the site.	Migration in to development	End Users	Severe	Unlikely	Moderate to Low	 A508. Site appears to be Greenfield with no naturally occurring organic soils likely to be a potential source of soil gas. Ground Investigation was undertaken in areas not previously investigated to inform detailed design and to confirm these assumptions. No Made Ground was identified, or materials thought to be likely to generate soil gas. No significant contamination was identified. Monitoring of instrumentation installed in boreholes has confirmed there is no significant soil gas present that would be considered a risk to the proposed scheme or end users. It should be noted that cohesive soils present across the site would prevent/ limit potential pathways from any perceived off site sources migrating on to the site. 	Absent	Negligible	Vigilance to be maintained throughout the earthworks and enabling works. Should any suspicious, unexpected strata, materials or Made Ground materials be identified visually or by means of strange odours the advice of a specialist Geo-environmental Engineer should be sought. The Geo-Environmental advisor shall provide advice on immediate actions and undertake investigation, testing and liaison with regulators and contractors on how to proceed safely.	Negligible

APPENDIX S HASWASTE

Haswaste, developed by Dr. Iain Haslock.

Roade Bypass 313583											
TP/WS/BH	İ		TP01	TP02	TP03	TP04	TP05	TP12	TP14	TP15	TP15
Depth (m)			0.20	0.20	0.30	0.50	0.20	0.20	0.20	0.20	1.50
Envirolab reference	1										
% Moisture	т	%			1		1		1		i
pH (soil)	ł	70	7.66	7.15	8.10	8.20	6.86	7.90	7.67	7.40	8.47
pH (leachate)	<u> </u>										
Arsenic Cadmium	updated v5.4ei	mg/kg mg/kg	4 0.9	10 1.1	2 1.0	<1 1.0	4 0.7	11 1.1	7	8 1.3	<1 <0.5
Copper		mg/kg	33	16	24	15	12	15	14	15	5
CrVI or Chromium Lead		mg/kg mg/kg	36 30	26 24	39 20	37 16	34 21	26 96	26 21	35 22	11 4
Mercury		mg/kg mg/kg	0.17	0.17	0.30	0.17 30	0.17 21	0.17	0.17	0.17	0.17
Nickel Selenium		mg/kg	26 1	24 1	31 1	1	1	27 1	26 1	29 1	11 1
Zinc	updated v5.4ei	mg/kg	82	68	69	53	63	73	71	87	16
Barium Beryllium Vanadium		mg/kg mg/kg mg/kg									
Cobalt	updated v5.4ei	mg/kg									
Manganese Molybdenum	updated v5.4ei	mg/kg mg/kg									
Antimony Aluminium	ł	mg/kg mg/kg									<u> </u>
Bismuth		mg/kg									
CrIII Iron	updated v5.4ei	mg/kg mg/kg									
Strontium		mg/kg									
Tellurium Thallium		mg/kg mg/kg									
Titanium		mg/kg									
Tungsten Ammoniacal N	†	mg/kg mg/kg									<u> </u>
ws Boron	1	mg/kg									
PAH (Input Total PAH OR individual Acenaphthene	al PAH results)	mg/kg	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Acenaphthylene		mg/kg	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Anthracene Benzo(a)anthracene		mg/kg mg/kg	0.02 0.04	0.02	0.02 0.04	0.02	0.02	0.02	0.02 0.04	0.02	0.02 0.04
Benzo(a)pyrene		mg/kg	0.06	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
Benzo(b)fluoranthene Benzo(ghi)perylene		mg/kg mg/kg	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Benzo(k)fluoranthene		mg/kg	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07
Chrysene Dibenzo(ah)anthracene		mg/kg mg/kg	0.06	0.06	0.06 0.04	0.06	0.06	0.06	0.06 0.04	0.06	0.06
Fluoranthene		mg/kg	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
Fluorene Indeno(123cd)pyrene		mg/kg mg/kg	0.01 0.04	0.01	0.01 0.03	0.01	0.01 0.03	0.01 0.03	0.01 0.03	0.01 0.03	0.01 0.03
Naphthalene		mg/kg	0.03	0.03	0.03 0.03	0.03	0.03	0.03	0.03 0.03	0.03	0.03
Phenanthrene Pyrene		mg/kg mg/kg	0.03	0.03	0.03	0.03	0.03	0.07	0.03	0.03	0.03
Coronene Total PAHs (16 or 17)	1	mg/kg mg/kg									
TPH	1	ilig/kg			1		1		1		
Petrol	1	mg/kg									
Diesel Lube Oil		mg/kg mg/kg									
Crude Oil	Ī	mg/kg									
White Spirit / Kerosene	I	mg/kg									
Creosote Unknown TPH with ID	ł	mg/kg mg/kg									<u> </u>
Unknown TPHCWG	İ	mg/kg	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Total Sulphide	Ī	mg/kg									
Complex Cyanide Free (or Total) Cyanide	ł	mg/kg mg/kg									├ ───┤
Thiocyanate	1	mg/kg									
Elemental/Free Sulphur Phenois Input Total Phenois HPLC	COR individual	mg/kg Phenol					1				
results.	тт		·								
Phenol Cresols		mg/kg mg/kg									
Xylenols		mg/kg									
Resourcinol Phenols Total by HPLC	ł	mg/kg mg/kg									<u> </u>
BTEX Input Total BTEX OR individ	ual BTEX resul	ts.		0.71		A		0.71		0.51	
Benzene Toluene		mg/kg mg/kg	0.01 0.01	0.01	0.01 0.01	0.01	0.01 0.01	0.01	0.01 0.01	0.01 0.01	0.01 0.01
Ethylbenzene		mg/kg	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Xylenes Total BTEX	t	mg/kg mg/kg	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
PCBs (POPs) PCBs Total (eg EC7/WHO12)	- I	mg/kg									
PBBs (POPs)	-										
Hexabromobiphenyl (Total or PBB153; 2,2',4,4',5,5'- if only available)		mg/kg									

envirolab

Haswaste, developed by Dr. lain Haslock.

NO	aue Bypass 313303									
TP	/WS/BH	TP01	TP02	TP03	TP04	TP05	TP12	TP14	TP15	TP15
De	pth (m)	0.20	0.20	0.30	0.50	0.20	0.20	0.20	0.20	1.50
En	virolab reference									

POPs Dioxins and Furans Input Total Dioxins and Furans

OR individual Dioxin and Furan res	ults.					
2,3,7,8-TeCDD	mg/kg					
1,2,3,7,8-PeCDD	mg/kg					
1,2,3,4,7,8-HxCDD	mg/kg					
1,2,3,6,7,8-HxCDD	mg/kg					
1,2,3,7,8,9-HxCDD	mg/kg					
1,2,3,4,6,7,8-HpCDD	mg/kg					
OCDD	mg/kg					
2,3,7,8-TeCDF	mg/kg					
1,2,3,7,8-PeCDF	mg/kg					
2,3,4,7,8-PeCDF	mg/kg					
1,2,3,4,7,8-HxCDF	mg/kg					
1,2,3,6,7,8-HxCDF	mg/kg					
2,3,4,6,7,8-HxCDF	mg/kg					
1,2,3,7,8,9-HxCDF	mg/kg					
1,2,3,4,6,7,8-HpCDF	mg/kg					
1,2,3,4,7,8,9-HpCDF	mg/kg					
OCDF	mg/kg					
Total Dioxins and Furans	mg/kg					

Some Pesticides (POPs unless otherwise stated)

		,	 				
Aldrin		mg/kg	0.050000		0.050000		
α Hexachlorocyclohexane (alpha- HCH) (leave empty if total HCH results used)		mg/kg	0.050000		0.050000		
β Hexachlorocyclohexane (beta- HCH) (leave empty if total HCH results used)		mg/kg	0.050000		0.050000		
α Cis-Chlordane (alpha) OR Total Chlordane		mg/kg					
δ Hexachlorocyclohexane (delta- HCH) (leave empty if total HCH results used)		mg/kg					
Dieldrin	updated v5.4ei	mg/kg	0.050000		0.050000		
Endrin		mg/kg	0.050000		0.050000		
χ Hexachlorocyclohexane (gamma- HCH) (lindane) <i>OR Total</i> HCH	updated v5.4ei	mg/kg	0.050000		0.050000		
Heptachlor		mg/kg	0.050000		0.050000		
Hexachlorobenzene		mg/kg					
o,p'-DDT (leave empty if total DDT results used)		mg/kg					
p,p'-DDT OR Total DDT	updated v5.4ei	mg/kg					
χ Trans-Chlordane (gamma) (leave empty if total Chlordane results used)		mg/kg					
Chlordecone (kepone) Pentachlorobenzene		mg/kg mg/kg					
Mirex		mg/kg					
Toxaphene (camphechlor)	•	mg/kg					
Tin							
Tin (leave empty if Organotin and Tin excl Organotin results used)		mg/kg					
Organotin							
Dibutyltin; DiBT		mg/kg					
Tributyltin; TriBT		mg/kg					
Triphenyltin; TriPT		mg/kg					
Tetrabutyltin; TeBT		mg/kg					
Tin excluding Organotin	r		 				
Tin excl Organotin		mg/kg					

TP01

0.20

TP02

0.20

TP03

0.30

TP04

0.50

TP15

1.50

envirolab

Haswaste, developed by Dr. lain Haslock.

Roade Bypass 313583	
TP/WS/BH	
Depth (m)	
Envirolab reference	
Asbestos in Soil	Thresholds

Asbestos detected in Soil (enter Y or N)	Y
Asbestos % Composition in Soil (Matrix Loose Fibres or Microscopic Identifiable Pieces only)	see "Carc HP7 % Asbestos in Soil (Fibres)" below
Carcinogenic HP7 % Asbestos in Soil (fibres or micro pieces)	≥0.1%

Asbestos Identifiable Pieces visible with the naked eye detected in the Soil (enter Y or N)

	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD
			A	sbestos in Soil above is	"Y", the soil is Hazard	ous Waste HP5 and HP	77		
%									
	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
	If Asbestos in Soil abo	ove is "Y", but Asbestos		he soil is Non Hazardou use Asbestos % result			Its where loose fibres of	or micro pieces are only	present. You cannot
	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD

TP05

0.20

TP12

0.20

TP14

0.20

TP15

0.20

If visual identifiable pieces of asbestos are present, <u>you cannot use Asbestos % results</u> and the whole soil sample is Hazardous Waste HP5 and HP7 Construction material containing Asbestos 17 06 05. Therefore, if Asbestos in Soil above is 'Y', the Asbestos % above is '<0.1%', but the Asbestos Identifiable Pieces visible with the naked eye is 'Y', the Soil is Hazardous Waste.

Identifiable Pieces are Cement, Fragments, Board, Rope etc. is anything ACM that is not Loose Fibres. All visual asbestos pieces need to be removed leaving only fibres (or micro pieces) with an Asbestos % Composition in Soil result of <0.1% for the soil to become non-hazardous waste.

					J	y fibres (or micro piece			ult of <0.1% for the soi	I to become non-hazar	
Hazardous Property	Thresholds	Cut Off Value									
	> FW	<1%	0.00744	0.00631	0.00775	#VALUE!	0.00706	0.00644	0.00592	0.00778	#VALUE!
Corrosive HP8 Irritant HP4	≥10%	<1%	0.00744	0.00631	0.00298	#VALUE!	0.00706	0.00315	0.00592	0.00778	#VALUE!
Irritant HP4	≥20%	<1%	0.00900	0.00667	0.00899	0.00777	0.00562	0.00717	0.00685	0.00757	0.00281
Specifc Target Organ Toxicity	≥1%		0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Specifc Target Organ Toxicity HP5	≥20%		0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Specifc Target Organ Toxicity HP5	≥1%		0.00691	0.00499	0.00749	0.00710	0.00653	0.00545	0.00525	0.00672	0.00222
Specifc Target Organ Toxicity HP5	≥10%		0.00300	0.00240	0.00200	0.00160	0.00210	0.00960	0.00210	0.00220	0.00040
Aspiration Toxicity HP5	≥10%		0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002
Acute Toxicity HP6	≥0.1%	<0.1%	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6	≥0.25%	<0.1%	0.00055	0.00135	0.00029	#VALUE!	0.00055	0.00148	0.00094	0.00107	#VALUE!
Acute Toxicity HP6	≥5% >25%	<0.1% <1%	0.00705 0.01209	0.00516 0.00918	0.00763 0.01109	0.00725 0.00947	0.00667 0.00778	0.00516 0.01687	0.00513 0.00905	0.00686	0.00225 #VALUE!
Acute Toxicity HP6 Acute Toxicity HP6	≥0.25%	<0.1%	0.00002	0.00002	0.00003	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002
Acute Toxicity HP6	≥2.5%	<0.1%	0.00691	0.00500	0.00749	0.00710	0.00653	0.00500	0.00499	0.00672	0.00211
Acute Toxicity HP6	≥15%	<0.1%	0.00000	0.00001	0.00000	0.00000	0.00000	0.00001	0.00000	0.00000	0.00000
Acute Toxicity HP6	≥55%	<1%	0.00009	0.00013	0.00010	0.00010	0.00007	0.00013	0.00010	0.00013	#VALUE!
Acute Toxicity HP6	≥0.1%	<0.1%	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6	≥0.5%	<0.1%	0.00702	0.00512	0.00762	0.00722	0.00662	0.00512	0.00511	0.00687	#VALUE!
Acute Toxicity HP6	≥3.5% ≥22.5%	<0.1%	0.00014	0.00014	0.00014	0.00014	0.00014	0.00014	0.00014	0.00014	0.00014
Acute Toxicity HP6	≥22.5% ≥0.1%	<1%	0.01198	0.00906	0.01098	0.00936 #VALUE!	0.00770	0.01676	0.00894	0.00976	0.00319 #VALUE!
Carcinogenic HP7 Carcinogenic HP7	≥0.1%		0.00000000	0.00000000	0.00000000	#VALUE!	0.00000000	0.00000000	0.00000000	0.00000000	#VALUE! 0.000000000
Carcinogenic HP7	≥1%		0.00000	0.00001	0.000000	0.00000	0.0000000000000000000000000000000000000	0.00001	0.00000	0.00000	0.00000
Carcinogenic HP7 Unknown TPH with ID	≥1,000mg/kg		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Carcinogenic HP7 b(a)p marker test (Unknown TPH with ID only)	≥0.01%		#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
pH Corrosive HP8 pH (soil or leachate)	H8 ≥11.5		7.66	7.15	8.10	8.20	6.86	7.90	7.67	7.40	8.47
pH Corrosive HP8 pH (soil or leachate)	H8 ≤2		7.66	7.15	8.10	8.20	6.86	7.90	7.67	7.40	8.47
Toxic for Reproduction HP10	≥0.3%		0.00525	0.00485	0.00626	0.00606	0.00424	0.00960	0.00525	0.00586	0.00222
Toxic for Reproduction HP10	≥3%		0.00691	0.00499	0.00749	0.00710	0.00653	0.00499	0.00499	0.00672	0.00211
Mutagenic HP11	≥0.1%		0.00691	0.00499	0.00749	0.00710	0.00653	0.00499	0.00499	0.00672	0.00211
Mutagenic HP11 Unknown TPH with ID	≥1,000mg/kg		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mutagenic HP11 b(a)p marker test (Unknown TPH with ID only)	≥0.01%		#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Mutagenic HP11	≥1%		0.00525	0.00485	0.00626	0.00606	0.00424	0.00545	0.00525	0.00586	0.00222
Produces Toxic Gases HP12 Sulphide	≥1,400mg/kg		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Produces Toxic Gases HP12 Cyanide	≥1,200mg/kg		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Produces Toxic Gases HP12 Thiocyanate	≥2,600mg/kg		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HP13 Sensitising	≥10%		0.00691	0.00499	0.00749	0.00710	0.00653	0.00545	0.00525	0.00672	0.00222
Ecotoxic HP14	≥1.0	<0.1% (except CompCN + Thiocyanate + Xylene + BTEX 1%).	0.11992	0.09692	0.11072	#VALUE!	0.09166	0.13072	0.09616	0.11500	#VALUE!
Ecotoxic HP14	≥25%	<0.1%	0.02998	0.02423	0.02768	#VALUE!	0.02292	0.03268	0.02404	0.02875	#VALUE!
Ecotoxic HP14	≥25%	<0.1% (except CompCN + Thiocyanate + Xylene + BTEX 1%).	0.02999	0.02424	0.02769	#VALUE!	0.02293	0.03269	0.02405	0.02876	#VALUE!
Ecotoxic HP14 individual substance specific thresholds (Benzo(a)anthracene, Dibenz(ah)anthracene (or Total PAH if only used), Sn, TriPT)	≥0.0025%		0.000004	0.000004	0.000004	0.000004	0.000004	0.000004	0.000004	0.000004	0.000004
Ecotoxic HP14 individual substance specific thresholds (Co, γ-HCH, DiBT, TriBT)	≥0.025%		0.00000	0.00001	0.00000	0.00000	0.00000	0.00001	0.00000	0.00000	0.00000
Persistent Organic Pollutant (PCB, PBB or POP Pesticides)	>0.005%		0.00000000	0.0000500	0.00000000	0.00000000	0.00000000	0.00000500	0.00000000	0.00000000	0.0000000
Persistent Organic Pollutant (Total Dioxins+Furans)	>0.0000015%		0.0000000000	0.0000000000	0.0000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000
Persistent Organic Pollutant (Individual Dioxins+Furans)	>0.0000015%		0.000000000	0.0000000000	0.0000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.0000000000

If other contaminants need adding to Haswaste, please contact Envirolab.

envirolab

Haswaste, developed by Dr. lain Haslock.

Roade Bypass 313583												
	1		-									
TP/WS/BH		TP16 0.10	TP16A 0.20	TP16A 0.50	TP17 0.20	W\$02 0.20	WS04 0.30	WS05 0.20	W\$06 0.10	WS06 1.50	WS08 0.40	WS10 0.40
Depth (m) Envirolab reference		0.10	0.20	0.50	0.20	0.20	0.30	0.20	0.10	1.50	0.40	0.40
LINITOIAD Telefence	1						1				1	
% Moisture	%											
pH (soil) pH (leachate)		8.17	8.78	8.17	7.91	7.66	8.11	7.55	7.66	7.75	8.02	7.97
Arsenic	mg/kg	3	1	3	3	7	3	<1	4	<1	6	6
Cadmium Copper	updated v5.4ei mg/kg mg/kg	0.8 12	<0.5 2	0.7 10	0.7 13	1.3 13	0.8 14	0.8 20	0.8 13	<0.5 21	1.1 13	0.9 16
CrVI or Chromium	mg/kg	18	4	20	20	33	18	25	22	29	22	28
Lead Mercury	mg/kg mg/kg	18 0.17	2 0.31	13 0.17	16 0.29	19 0.17	16 0.20	16 0.17	17 0.17	16 0.17	14 0.17	13 0.17
Nickel	mg/kg	17	3	17	16	33	16	21	19	3	23	30
Selenium Zinc	mg/kg updated v5.4ei mg/kg	1 54	1 5	1 45	1 50	1 72	1 52	1 58	1 55	1 9	1 65	1 50
Barium	mg/kg											
Beryllium Vanadium	mg/kg mg/kg											
Cobalt	updated v5.4ei mg/kg											
Manganese Molybdenum	updated v5.4ei mg/kg mg/kg											
Antimony	mg/kg											
Aluminium Bismuth	mg/kg mg/kg											
CrIII	mg/kg updated v5.4ei mg/kg											
Iron Strontium	mg/kg											
Tellurium Thallium	mg/kg mg/kg											
Titanium	mg/kg											
Tungsten Ammoniacal N	mg/kg mg/kg		1					1				
ws Boron	mg/kg											
PAH (Input Total PAH OR individua Acenaphthene	al PAH results) mg/kg	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Acenaphthylene	mg/kg	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Anthracene Benzo(a)anthracene	mg/kg mg/kg	0.02	0.02 0.16	0.02 0.04	0.02	0.02	0.02 0.04	0.02	0.02	0.02	0.02 0.04	0.02 0.04
Benzo(a)pyrene	mg/kg	0.04	0.28	0.04	0.04	0.04	0.04	0.04	0.07	0.04	0.04	0.04
Benzo(b)fluoranthene Benzo(ghi)perylene	mg/kg mg/kg	0.05	0.32	0.05	0.05	0.05	0.05	0.05	0.07 0.05	0.05	0.05	0.05
Benzo(k)fluoranthene	mg/kg	0.07	0.12	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07
Chrysene Dibenzo(ah)anthracene	mg/kg mg/kg	0.06	0.19 0.05	0.06 0.04	0.06	0.06	0.06	0.06 0.04	0.06	0.06	0.06 0.04	0.06 0.04
Fluoranthene	mg/kg	0.08	0.17	0.08	0.08	0.08	0.08	0.08	0.09	0.08	0.08	0.08
Fluorene Indeno(123cd)pyrene	mg/kg mg/kg	0.01 0.03	0.01 0.25	0.01 0.03	0.01 0.03	0.01	0.01 0.03	0.01 0.03	0.01	0.01	0.01 0.03	0.01 0.03
Naphthalene	mg/kg	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Phenanthrene Pyrene	mg/kg mg/kg	0.03	0.04 0.18	0.03 0.07	0.03	0.03	0.03	0.03	0.04	0.03	0.03	0.03 0.07
Coronene	mg/kg											
Total PAHs (16 or 17) TPH	mg/kg											
Petrol	mg/kg											
Diesel Lube Oil	mg/kg mg/kg											
Crude Oil	mg/kg											
White Spirit / Kerosene	mg/kg		-					-				
Creosote	mg/kg	-										
Unknown TPH with ID Unknown TPHCWG	mg/kg mg/kg	0.1	0.8	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Total Sulphide	mg/kg	0.1	0.0	U .1	0.1	0.1	9.1	V.1	0.1	0.1	0.1	<u></u>
Complex Cyanide	mg/kg	-										
Free (or Total) Cyanide Thiocyanate	mg/kg mg/kg											
Elemental/Free Sulphur Phenois Input Total Phenois HPLC	mg/kg											
results.												
Phenol Cresols	mg/kg mg/kg											
Xylenols	mg/kg											
Resourcinol Phenols Total by HPLC	mg/kg mg/kg											ı
BTEX Input Total BTEX OR individ	lual BTEX results.			1			ı ı				ı 1	·]
Benzene Toluene	mg/kg mg/kg	0.01	0.01	0.01 0.01	0.01 0.01	0.01 0.01	0.01	0.01 0.01	0.01 0.01	0.01	0.01 0.01	0.01
Ethylbenzene	mg/kg	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Xylenes Total BTEX	mg/kg mg/kg	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
PCBs (POPs)	I mg/Kg	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
PCBs Total (eg EC7/WHO12)	mg/kg											
PBBs (POPs)	т											
Hexabromobiphenyl (Total or PBB153; 2,2',4,4',5,5'- if only	mg/kg											
available)	l											

envirolab

Haswaste, developed by Dr. lain Haslock.

Roade Bypass 313583												
TP/WS/BH	-	TP16	TP16A	TP16A	TP17	W\$02	WS04	W\$05	W\$06	W\$06	W\$08	WS10
Depth (m)		0.10	0.20	0.50	0.20	0.20	0.30	0.20	0.10	1.50	0.40	0.40
Envirolab reference												

POPs Dioxins and Furans Input Total Dioxins and Furans

OR individual Dioxin and Furan res	ults.						
2,3,7,8-TeCDD	mg/kg						
1,2,3,7,8-PeCDD	mg/kg						
1,2,3,4,7,8-HxCDD	mg/kg						
1,2,3,6,7,8-HxCDD	mg/kg						
1,2,3,7,8,9-HxCDD	mg/kg						
1,2,3,4,6,7,8-HpCDD	mg/kg						
OCDD	mg/kg						
2,3,7,8-TeCDF	mg/kg						
1,2,3,7,8-PeCDF	mg/kg						
2,3,4,7,8-PeCDF	mg/kg						
1,2,3,4,7,8-HxCDF	mg/kg						
1,2,3,6,7,8-HxCDF	mg/kg						
2,3,4,6,7,8-HxCDF	mg/kg						
1,2,3,7,8,9-HxCDF	mg/kg						
1,2,3,4,6,7,8-HpCDF	mg/kg						
1,2,3,4,7,8,9-HpCDF	mg/kg						
OCDF	mg/kg						
Total Dioxins and Furans	mg/kg						

Some Pesticides (POPs unless otherwise stated)

· · ·	7					1				
Aldrin	ļ	mg/kg		0.050000	0.050000					
α Hexachlorocyclohexane (alpha-										
HCH) (leave empty if total HCH		mg/kg		0.050000	0.050000					
results used)	ł									
β Hexachlorocyclohexane (beta-										
HCH) (leave empty if total HCH		mg/kg		0.050000	0.050000					
results used)	ł									
α Cis-Chlordane (alpha) OR Total		mg/kg								
Chlordane	ł		-							
δ Hexachlorocyclohexane (delta-		mg/kg								
HCH) (leave empty if total HCH results used)		iiig/kg								
Dieldrin	updated v5.4ei	mg/kg		0.050000	0.050000					
Endrin	updated v5.4ei	mg/kg	-	0.050000	0.050000					
	ł	inging		0.000000	0.000000					
χ Hexachlorocyclohexane (gamma-	updated v5.4ei	mg/kg		0.050000	0.050000					
HCH) (lindane) OR Total HCH	upulitu vo.voi	inging								
Heptachlor	ł	mg/kg	-	0.050000	0.050000					
Hexachlorobenzene	t	mg/kg								
o,p'-DDT (leave empty if total	t									
DDT results used)		mg/kg								
p,p'-DDT OR Total DDT	updated v5.4ei	mg/kg								
χ Trans-Chlordane (gamma)										
(leave empty if total Chlordane		mg/kg								
results used)										
Chlordecone (kepone)	ī	mg/kg								
Pentachlorobenzene	ł	mg/kg	-							
Mirex	ł	mg/kg								
Toxaphene (camphechlor)	t	mg/kg								
	1									
Tin	T		r							
Tin (leave empty if Organotin and										
Tin excl Organotin results used)		mg/kg								
	L									
Organotin	T									
Dibutyltin; DiBT		mg/kg								
Teibut dia: TeiDT	t									
Tributyltin; TriBT	ļ	mg/kg								
Triphenyltin; TriPT		mg/kg								
	ł									
Tetrabutyltin; TeBT	1	mg/kg		I			I			
Tin excluding Organotin	T			1	1		1	1	1	
Tin excl Organotin		mg/kg								

TP16 TP16A

Cut Off

Thresholds

T WS10

All visual asbestos pieces need to I

envirolab

Haswaste, developed by Dr. lain Haslock.

Roade Bypass 313583	
TP/WS/BH	
Depth (m)	
Envirolab reference	

ASDESIOS III JUII	THIESHOUS
Asbestos detected in Soil (enter Y or N)	Y
Asbestos % Composition in Soil (Matrix Loose Fibres or Microscopic Identifiable Pieces only)	see "Carc HP7 % Asbestos in Soil (Fibres)" below
Carcinogenic HP7 % Asbestos in Soil (fibres or micro pieces)	≥0.1%

Asbestos Identifiable Pieces visible with the naked eye detected in the Soil (enter Y or N)

Hazardous Property

		0.10	0.20	0.50	0.20	0.20	0.30	0.20	0.10	1.50	0.40	0.40	
nolds													
		NAD											
	Asbestos in Soil above is "Y", the soil is Hazardous Waste HP5 and HP7												
rc HP7 stos in bres)" w	%												
%		0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
	If Asbestos in Soil above is "Y", but Asbestos % above is "<0.1%", the soil is Non Hazardous Waste. You can only use Asbestos % results where loose fibres or micro pieces are only present. You cannot If Asbestos in Soil above is "Y", but Asbestos were use Asbestos % results where loose fibres or micro pieces are only present. You cannot If Asbestos in Soil above is "Y", but Asbestos were use Asbestos % results where loose fibres or micro pieces are only present. You cannot If Asbestos in Soil above is "Y", but Asbestos were use Asbestos % results where loose fibres or micro pieces are only present.												
		NAD											

TP17

TP16A

If visual identifiable pieces of asbestos are present, you cannot use <u>Asbestos % results</u> and the whole soil sample is Hazardous Waste HP5 and HP7 Construction material containing Asbestos 17 06 05. If visual identifiable pieces of asbestos are p Therefore, if Asbestos in Soil above is "Y", the Asbestos % above is "<0.1%", but the Asbestos Identifiable Pieces visible with the naked eye is "Y", the soil is Hazardous Waste. Therefore, if Asbestos in Soil above is "Y", the Asbestos % above is "0.1%", but the Asbestos Identifiable Pieces visible with the naked eye is "Y", the soil is Hazardous Waste.

Identifiable Pieces are Cement, Fragments, Board, Rope etc. is anything ACM that is not Loose Fibres. All visual asbestos pieces need to be removed leaving only libres (or micro pieces) with an Asbestos % Composition in Soil result of <0.1% for the soil to become non-hazardous waste.

Tiazaidous Filopenty	Thesholds	Value											
Corrosive HP8	≥5%	<1%	0.00385	0.00090	0.00424	0.00424	0.00726	0.00385	#VALUE!	0.00475	#VALUE!	0.00502	0.00617
Irritant HP4	≥10%	<1%	0.00175	0.00036	0.00153	0.00187	0.00239	0.00198	#VALUE!	0.00200	#VALUE!	0.00226	0.00260
Irritant HP4	≥20%	<1%	0.00481	0.00086	0.00458	0.00472	0.00815	0.00483	0.00652	0.00533	0.00300	0.00613	0.00789
Specifc Target Organ Toxicity HP5	≥1%		0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Specifc Target Organ Toxicity HP5	≥20%		0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Specifc Target Organ Toxicity HP5	≥1%		0.00346	0.00077	0.00384	0.00384	0.00667	0.00346	0.00480	0.00422	0.00557	0.00465	0.00606
Specifc Target Organ Toxicity HP5	≥10%		0.00180	0.00020	0.00130	0.00160	0.00190	0.00160	0.00160	0.00170	0.00160	0.00140	0.00130
Aspiration Toxicity HP5	≥10%		0.00002	0.00009	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002
Acute Toxicity HP6	≥0.1%	<0.1%	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6	≥0.25%	<0.1%	0.00041	0.00017	0.00041	0.00044	0.00094	0.00042	#VALUE!	0.00055	#VALUE!	0.00081	0.00081
Acute Toxicity HP6	≥5%	<0.1%	0.00360	0.00093	0.00398	0.00401	0.00648	0.00360	0.00494	0.00437	0.00571	0.00437	0.00552
Acute Toxicity HP6	≥25%	<1%	0.00669	#VALUE!	0.00595	0.00639	0.01018	0.00651	0.00820	0.00710	#VALUE!	0.00764	0.00927
Acute Toxicity HP6	≥0.25%	<0.1%	0.00002 0.00346	0.00004 0.00077	0.00002 0.00384	0.00003 0.00385	0.00002 0.00634	0.00002 0.00346	0.00002 0.00480	0.00002 0.00422	0.00002 0.00557	0.0002	0.00002 0.00538
Acute Toxicity HP6	≥2.5%	<0.1%	0.00346	0.00077	0.00084	0.00085	0.00034	0.00346	0.00480	0.000422	0.00000	0.00422	0.00038
Acute Toxicity HP6	≥15% ≥55%	<0.1%											
Acute Toxicity HP6		<1%	0.00008	#VALUE!	0.00007	0.00009	0.00013	0.00008	0.00008	0.00008	#VALUE!	0.00011	0.00009
Acute Toxicity HP6	≥0.1%	<0.1%		0.00000 #VALUE!						0.00000	0.00000 #VALUE!	0.00000	
Acute Toxicity HP6	≥0.5%	<0.1%	0.00355	#VALUE! 0.00014	0.00393	0.00394	0.00648	0.00356	0.00490	0.00432	#VALUE! 0.00014	0.00435	0.00548
Acute Toxicity HP6	≥3.5%	<0.1%											
Acute Toxicity HP6	≥22.5%	<1%	0.00659	0.00104	0.00587	0.00631	0.01004	0.00642	0.00811	0.00701	0.00458	0.00752	0.00917
Carcinogenic HP7	≥0.1%		0.00346	0.00077	0.00384	0.00384	0.00667	0.00346	#VALUE!	0.00422	#VALUE!	0.00465	0.00606
Carcinogenic HP7	≥0.1%		0.000000000	0.00000000	0.00000000	0.00000000	0.000000000	0.00000000	0.000000000	0.00000000	0.000000000	0.000000000	0.00000000
Carcinogenic HP7	≥1%		0.00000	0.00003	0.00000	0.00001	0.00000	0.00000	0.00000	0.00001	0.00001	0.00000	0.00000
Carcinogenic HP7 Unknown TPH with ID	≥1,000mg/kg		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Carcinogenic HP7 b(a)p marker test (Unknown TPH with ID only)	≥0.01%		#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
pH Corrosive HP8 pH (soil or leachate) pH Corrosive HP8 pH (soil or	H8 ≥11.5		8.17	8.78	8.17	7.91	7.66	8.11	7.55	7.66	7.75	8.02	7.97
leachate) Toxic for Reproduction HP10	H8 ≤2		8.17 0.00343	8.78	8.17 0.00343	7.91	7.66	8.11	7.55	7.66 0.00384	7.75	8.02	7.97
	≤0.3% >29/		0.00345	0.00077	0.00343	0.00323	0.00634	0.00346	0.00424	0.00422	0.00557	0.00403	0.00538
Toxic for Reproduction HP10 Mutagenic HP11	≤370 >0.1%		0.00346	0.00077	0.00384	0.00384	0.00634	0.00346	0.00480	0.00422	0.00557	0.00422	0.00538
Mutagenic HP11 Unknown TPH with ID	≥1,000mg/kg		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mutagenic HP11 b(a)p marker test (Unknown TPH with ID only)	≥0.01%		#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Mutagenic HP11	≥1%		0.00343	0.00061	0.00343	0.00323	0.00667	0.00323	0.00424	0.00384	0.00061	0.00465	0.00606
Produces Toxic Gases HP12 Sulphide	≥1,400mg/kg		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Produces Toxic Gases HP12 Cyanide	≥1,200mg/kg		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Produces Toxic Gases HP12 Thiocyanate	≥2,600mg/kg		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HP13 Sensitising	≥10%		0.00346	0.00077	0.00384	0.00384	0.00667	0.00346	0.00480	0.00422	0.00557	0.00465	0.00606
Ecotoxic HP14	≥1.0	<0.1% (except CompCN + Thiocyanate + Xylene + BTEX 1%).	0.06995	#VALUE!	0.06404	0.06848	0.10656	0.06826	#VALUE!	0.07575	#VALUE!	0.08393	0.08757
Ecotoxic HP14	≥25%	<0.1%	0.01749	#VALUE!	0.01601	0.01712	0.02664	0.01707	#VALUE!	0.01894	#VALUE!	0.02098	0.02189
Ecotoxic HP14	≥25%	<0.1% (except CompCN + Thiocyanate + Xylene + BTEX 1%).	0.01750	#VALUE!	0.01602	0.01713	0.02665	0.01708	#VALUE!	0.01895	#VALUE!	0.02099	0.02190
Ecotoxic HP14 individual substance specific thresholds (Benzo(a)anthracene, Dibenz(ah)anthracene (or Total PAH if only used), Sn, TriPT)	≥0.0025%		0.000004	0.000016	0.000004	0.000004	0.000004	0.000004	0.000004	0.000006	0.000004	0.000004	0.000004
Ecotoxic HP14 individual substance specific thresholds (Co, γ-HCH, DiBT, TriBT)	≥0.025%		0.00000	0.00001	0.00000	0.00001	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Persistent Organic Pollutant (PCB, PBB or POP Pesticides)	>0.005%		0.00000000	0.00000500	0.00000000	0.00000500	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000
Persistent Organic Pollutant (Total Dioxins+Furans)	>0.0000015%		0.0000000000	0.000000000	0.0000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000
Persistent Organic Pollutant			0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000					
(Individual Dioxins+Furans)	>0.0000015%		0.000000000	0.000000000	0.000000000	0.000000000	0.0000000000	0.0000000000	0.000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000

If other contaminants need adding to Haswaste, please contact